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A Survey of Methods for Forecasting, Policy Analysis and 

Planning, with Examples in R 

1. Overview 

 
This article presents examples of a variety of methods used for 
forecasting and policy analysis.  The primary purpose is to show 
that the methods can be implemented using data and software 
that are freely available on the Internet. 
 
The examples selected for discussion are basic examples of the 
most-used quantitative forecasting methods.  For forecasting 
methods that are less-used, the discussion is limited to availability 
of R software, not to illustration of application of the methods. 
 
The discussion of each example includes description of major 
steps leading to the development of the model, but it does not 
include discussion of the rationale for those steps.  A thorough 
presentation of the model-development process is included in the 
References. 
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This article is not intended as a tutorial in R, or as a tutorial in the 
various forecasting methods discussed.  The intention is to 
discuss the level of availability of free computer software 
programs (in R, and in GAMS for small models), to illustrate the 
level of detail of program output, and to provide an indication of 
the level of effort required to implement the various methods. 
 
The following is an outline of the classes of models to be 
considered. 
 

1. Causal Inference (Causal Modeling and Analysis) 
a. Estimability and exogeneity 
b. Experimental data vs. observational data 

2. Stochastic Models 
a. Time-series models 

i. Univariate univariable models (ARIMA models) 
ii. Univariate multivariable models (transfer-function 

models, ARMAX models) 
iii. Multivariate models (VAR, VARMA and VARMAX 

models) 
iv. Special topics 

1. ARCH and GARCH models 
2. Kalman filtering 
3. Bayesian estimation 
4. Structural models 

b. Microsimulation models 
3. Deterministic models (and primarily deterministic models) 

a. Computable general equilibrium models (CGE models) 
b. Population-based (demographic, regional, small-area 

estimation) models 
c. Cost-benefit models 
d. Anticipation surveys 
e. Content analysis 

4. References 
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The discussion of the first model, the univariate univariable 
model, is more detailed than the discussion of the later models.  
The examples do not present all of the R code required to 
implement the models, or to reproduce all of the output presented 
here.  The purpose is to provide an indication of the level of detail 
output by typical available R software, and the level of effort 
required to implement it. 
 

2. Causal Inference (Causal Modeling and Analysis) 

 
Estimability and Exogeneity 
 
When models include more than one variable, forecasts of a 
variable of interest – the dependent variable, or response variable 
– may be made conditional on assumed or predicted values for 
the other variables (the explanatory variables).  The validity of 
such forecasts depends on the causal relationship of the 
dependent variable to the explanatory variables. 
 
A “forecast” is an estimate of a future value of a variable.  The key 
issue to be addressed in forecasting problems is determination of 
how to construct good forecasts (i.e., unbiased or consistent 
estimates having small standard errors).  Over the past half-
century, a considerable body of knowledge has developed on the 
theory and practice of forecasting based on statistical models.  
(Other terms that will be used in this article are “prediction” and 
“projection.”  The terms “prediction” and “forecast” are 
interchangeable, and refer to an estimate of a future value based 
on a tested statistical model.  A “projection” is simply the 
extrapolation of a curve or formula, such as an economic trend or 
population projection, without consideration of a tested (validated) 
mathematical model displaying the salient statistical properties of 
the process generating the phenomenon under study.  A 
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“forecast” is a point or interval estimate of a quantity, along with 
an assessment of the likelihood of the estimate.) 
 
A useful way of describing causal relationships is through the use 
of causal model diagrams, as described by Judea Pearl in his 
book, Causality: Models, Reasoning, and Inference, 2nd Edition, 
Cambridge University Press, 2009 (1st Ed. 2000).  The causal 
model diagrams which Pearl uses to describe causal relationships 
are directed acyclic graphs (DAGs), or Bayesian networks.  From 
a directed acyclic graph representation of a causal system, the 
validity (estimability) of conditional forecasts may be determined.  
This validity is assessed by means of criteria that are defined in 
terms of features of the DAG, such as the back-door criterion and 
the front-door criterion. 
 
An alternative way of assessing the validity of conditional 
forecasts is to specify features of the joint probability distribution 
of the model variables.  Under this approach, three different 
situations are described, called exogeneity conditions, relative to 
estimation of a specified parameter of interest. 
 
The three main types of exogeneity are discussed in the book, 
Co-integration, Error-Correction, and the Econometric Analysis of 
Non-Stationary Data by Anindya Banerjee, Juan Dolado, John W. 
Galbraith, and David F. Hendry (Oxford University Press, 1993).  
These are: 
 

Weak exogeneity.  In this situation, forecasts may be made 
based on the conditional distribution, given the explanatory 
variables. 
 
Strong exogeneity.  In this situation, forecasts may be made 
conditional on forecasted future values of the explanatory 
variables. 
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Super exogeneity.  In this situation, forecasts may be made 
conditional on specified future values of the explanatory 
variables. 

 
While these exogeneity types can be defined in terms of 
theoretical factorization properties of the joint distribution, there is 
in general no practical way of assessing whether these conditions 
hold in practice.  With the Pearl approach, once a causal model 
diagram is specified in terms of a DAG, the estimability criteria 
may be readily assessed from visual inspection of the DAG. 
 
Experimental Data vs. Observational Data 
 
If a forecasting model is estimated using data from a randomized 
experiment, the causal model is very simple.  Specification of the 
levels of the explanatory variables is determined by 
randomization, and is therefore unrelated to any variables.  The 
estimated model may be used to predict the effects of changes in 
the dependent variables.  This is the situation in many laboratory 
experiments. 
 
If a forecasting model is estimated from observational data (i.e., 
data that are passively observed, for which the levels of the 
explanatory variables are not determined by randomization), then 
the estimation must be based on a causal model, and the 
forecasts made in accordance with that model.  This is the 
situation in many economic applications. 
 

3. Stochastic Models 

 

Time-Series Models 

 
Most applications of forecasting are concerned with short-term 
forecasting.  The term short-term refers to making predictions a 
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few (two or three) time periods into the future, where the time 
period refers to the standard reporting interval for the variable of 
interest.  The length of the time interval can vary from very short, 
such as one-minute intervals in foreign-exchange trading, to 
months, quarters, or years. 
 
The most widely used class of short-term forecasting models are 
time-series models, which are estimated from data collected at 
regularly spaced time intervals.  In order to construct a model of 
reasonable accuracy, it is usually necessary to have available at 
least one hundred observations.  The most widely used class of 
time-series models are autoregressive integrated moving average 
models, or ARIMA models.  These models are also referred to as 
“Box-Jenkins” models, after the two statisticians who showed that 
this class of models could describe many real-world phenomena 
well, and popularized their use. 
 
Box-Jenkins models may involve a single variable or multiple 
variables.  Examples of Box-Jenkins models will now be 
presented. 
 

Univariate Univariable Models (ARIMA Models) 

 

A Nonseasonal Model 

 
The term “variable” refers to a quantity of interest, stochastic or 
otherwise, such as time, temperature, price, or rate of inflation.  
The term “variate” refers to a random variable, that is, a real-
valued function defined on a sample space (or, more accurately, a 
measurable function defined on a probability space).  A univariate 
model involves a single random variable.  A univariate model may 
or may not include other non-random variables.  For example, a 
simple statistical regression model involves a single random 
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variable (the model error term) and a number of non-random 
variables (the explanatory variables), for example: 
 
yi = b0 + b1x1i + b2x2i + ei 
 
where i denotes the observation number, yi denotes the 
dependent (response, explained) variable, x1i and x2i denote 
explanatory (independent) variables, ei is the model error term (a 
sequence of random variables having mean zero mean, 
uncorrelated with each other and with the x’s).  (The dependent 
variable, y, is a random variable, but it is defined completely in 
terms of x1, x2 and e, so that the model is defined in terms of a 
single random variable, not two.) 
 
Suppose that zt denotes the value of a time-related variable z at 
time t, and that t is specified as a sequence of equal-interval 
times, t0, t1, t2,….  A standard model for describing the stochastic 
behavior of zt is 
 
zt = φ0 + φ1zt-1 + φ2zt-2 + … + φpzt-p + at – θ1at-1 – θ2at-2 - … - θqat-q, 
 
where 
 
zt = value of the observed random variable z at time t 
 
at = model error term, a sequence of uncorrelated random 
variables with mean zero and variance σ2 
 
φ1, φ2, …, φp = autoregressive parameters 
 
θ1, θ2, …, θq = moving-average parameters. 
 
If we introduce the backward-shift (or back-shift, or lag) operator, 
B, defined by Bzt = zt-1, then the preceding model may be written 
as 



9 
 

 
zt = φ0 + φ1Bzt + … + φpBpzt + at + θ1Bat + … + θqBqat 
 
or 
 
(1 – φ1B - … - φpBp)zt = (1 – θ1B - … - θqBq)at 
 
or 
 
Φ(B)zt = Θ(B) at 
 
where 
 
Φ(B) = 1 – φ1B - … - φpBp 
 
and 
 
Θ(B) = 1 – θ1B - … - θqBq. 
 
The polynomial Φ(B) is called the autoregressive polynomial, and 
the polynomial Θ(B) is called the moving-average polynomial. 
 
If the roots of the polynomial Φ(B) are outside the unit circle, then 
the process zt is stationary (i.e., the joint distribution of any 
sequence zt-r, zt-r-1, … , zt-r-s is the same for all integral values of r 
>= 0 and s >= 0). 
 
If some of the roots of Φ(B) are on the unit circle, then the 
process exhibits homogeneous nonstationary behavior – it 
wanders, as a random walk.  For example, consider the model 
 
Φ(B)(1-B)dzt = Θ(B)at, 
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where the order (highest power of B) of Φ(B) is p and the order of 
Θ(B) is q.  Such a model is said to be an autoregressive 
integrated moving average (or ARIMA) process of order (p,d,q). 
 
For practical time series, the roots of the moving-average 
polynomial are outside the unit circle.  If this condition holds, the 
process is said to be invertible, and may be represented as 
 
at = Θ-1(B) Φ(B)(1-B)d zt . 
 
An example of an ARIMA process is given by the time series of 
one-minute prices on the EUR/USD foreign-exchange market.  
These data are available from internet website HistData.com at 
https://www.histdata.com/ .  This particular dataset is 31,165 one-
minute prices for EUR/USD for the month of April, 2019. 
 
The steps involved in constructing an ARIMA model to represent 
these data are as follows: 
 

• List the data 

• Plot the data 

• Plot the autocorrelation function (ACF) of the data 

• If the ACF indicates nonstationarity, transform the data 
to a stationary variate 

• Plot the ACF and partial autocorrelation function 
(PACF) of the stationary variate 

• From the ACF and PACF, identify a structure for a 
tentative model (i.e., values of p and q) 

• Estimate the model parameters (φs, θs and σa
2) 

• Assess model adequacy (from ACF and σa
2, and 

possibly other criteria, such as the Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC) or 
the Hannan-Quinn Information Criterion (HQC)) 

• Revise the model, if indicated by diagnostic tests 

https://www.histdata.com/
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• Make forecasts using the tested model 

• Document the model development process and the 
tested model 

 
(Usage of the term “identification” and “identified” is not standard.  
In the field of econometrics, a model is “identified” if the 
parameters that define the model are estimable.  In the field of 
time-series analysis, the process of specifying a model structure 
(such as the values of p, d and q in an ARIMA model) is referred 
to as “identification.”) 
These steps will now be summarized, for the EUR/USD data.  
The data will be analyzed using software programs available from 
the Comprehensive R Analysis Network, CRAN, at Internet 
website https://cran.r-project.org/ , in the “stats” library of 
procedures. 
 
Figure 1 presents a listing of the first 240 observations of the data 
set. 
 
Figure 1. Listing of first 240 one-minute prices of EUR/USD forex 
data for April, 2019 
 
> print(x) 
  [1] 1.12324 1.12319 1.12331 1.12334 1.12325 1.12328 1.12329 
1.12334 1.12330 
 [10] 1.12329 1.12331 1.12334 1.12335 1.12335 1.12335 1.12326 
1.12326 1.12334 
 [19] 1.12334 1.12330 1.12329 1.12330 1.12330 1.12331 1.12330 
1.12334 1.12330 
 [28] 1.12330 1.12330 1.12331 1.12328 1.12325 1.12325 1.12325 
1.12339 1.12340 
 [37] 1.12335 1.12334 1.12341 1.12337 1.12328 1.12328 1.12325 
1.12326 1.12329 
 [46] 1.12331 1.12338 1.12341 1.12347 1.12341 1.12345 1.12348 
1.12350 1.12349 

https://cran.r-project.org/
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 [55] 1.12349 1.12350 1.12343 1.12345 1.12343 1.12340 1.12346 
1.12344 1.12344 
 [64] 1.12355 1.12364 1.12369 1.12366 1.12379 1.12374 1.12376 
1.12376 1.12370 
 [73] 1.12370 1.12370 1.12371 1.12374 1.12374 1.12374 1.12376 
1.12396 1.12409 
 [82] 1.12401 1.12401 1.12395 1.12388 1.12398 1.12391 1.12385 
1.12379 1.12379 
 [91] 1.12381 1.12380 1.12374 1.12374 1.12371 1.12383 1.12381 
1.12384 1.12382 
[100] 1.12381 1.12386 1.12396 1.12397 1.12397 1.12390 
1.12395 1.12385 1.12379 
[109] 1.12379 1.12379 1.12384 1.12380 1.12374 1.12372 
1.12369 1.12369 1.12365 
[118] 1.12380 1.12378 1.12389 1.12359 1.12355 1.12352 
1.12362 1.12366 1.12360 
[127] 1.12356 1.12368 1.12365 1.12357 1.12366 1.12377 
1.12361 1.12356 1.12357 
[136] 1.12358 1.12350 1.12356 1.12356 1.12355 1.12356 
1.12361 1.12353 1.12361 
[145] 1.12353 1.12363 1.12360 1.12351 1.12357 1.12356 
1.12349 1.12348 1.12361 
[154] 1.12359 1.12350 1.12348 1.12356 1.12376 1.12379 
1.12369 1.12354 1.12344 
[163] 1.12359 1.12359 1.12352 1.12352 1.12365 1.12376 
1.12365 1.12362 1.12351 
[172] 1.12322 1.12346 1.12340 1.12351 1.12329 1.12345 
1.12365 1.12358 1.12338 
[181] 1.12334 1.12340 1.12330 1.12322 1.12333 1.12329 
1.12325 1.12327 1.12324 
[190] 1.12333 1.12307 1.12309 1.12308 1.12313 1.12303 
1.12308 1.12298 1.12293 
[199] 1.12278 1.12283 1.12283 1.12296 1.12298 1.12307 
1.12319 1.12324 1.12361 
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[208] 1.12360 1.12365 1.12382 1.12371 1.12361 1.12347 
1.12337 1.12331 1.12356 
[217] 1.12372 1.12353 1.12372 1.12393 1.12418 1.12412 
1.12426 1.12423 1.12412 
[226] 1.12401 1.12391 1.12394 1.12386 1.12372 1.12373 
1.12392 1.12369 1.12371 
[235] 1.12372 1.12381 1.12385 1.12375 1.12386 1.12388 
 
Figure 2 presents a time-series plot of those observations. 
 
Figure 2.  Plot of 240 One-Minute EUR/USA Foreign Exchange 
Prices 

 
 
A sample size of 240 observations is plenty for which to estimate 
a Box-Jenkins model.  For the entire month of April, 2019, there 
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are 31,665 observations.  A quick visual scan of the month’s data 
show that the first 240 observations appear to be typical. 
 
The time series data were labeled as the variable “x”.  The R 
command for the data listing is print(x) and the R command for 
the plot is plot(x, type="l").  (Note: The analysis was performed 
using a source command file.  For console entry of commands, 
the command “x” would have produced the listing.  When using a 
command file, it is necessary to use the print function, “print(x)”.)  
 
Figure 3 shows a plot of the autocorrelation function (ACF) of the 
raw data.  The R command for constructing the ACF is acf(x). 
 
Figure 3.  Autocorrelation Function of Forex Price Data 
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 The ACF dies out slowly, indicating nonstationary behavior, 
which is evident from the graph.  Given the “wandering” 
appearance of the graph, and the slow decline of the ACF, it is 
reasonable to transform the raw data by taking first differences, 
i.e., by forming the transformed variate 
 
zt = (1 – B)xt = xt – xt-1 
 
where xt denotes the original variable and zt denotes the first 
difference.  Figure 4 shows the ACF of the first differences. 
 
Figure 4. Autocorrelation Function of First Differences of One-
Minute EUR/USD Forex Price Data 
 
> dx<-diff(x, lag = 1) 
 
> print(dx[1:10]) 
 [1] -0.00005  0.00012  0.00003 -0.00009  0.00003  0.00001  
0.00005 -0.00004 
 [9] -0.00001  0.00002 
 
> print(summary(dx)) 
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  
-3.000e-04 -5.000e-05  0.000e+00  2.678e-06  5.000e-05  
3.700e-04  
 
> print(acf(dx)) 
 
Autocorrelations of series ‘dx’, by lag 
 
     0      1      2      3      4      5      6      7      8      9     10  
 1.000 -0.047 -0.062 -0.053  0.132 -0.026 -0.168 -0.043 -0.083 -
0.081  0.016  
    11     12     13     14     15     16     17     18     19     20     21  
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 0.016  0.085 -0.075  0.048  0.180  0.041  0.003 -0.046  0.013  
0.005 -0.016  
    22     23  
 0.013 -0.123 
 

 
 
The ACF of the first differences is essentially zero.  The 
autocorrelation at lag 1 is small, -.047.   This suggests that a 
reasonable model might be 
 
zt = at 
 
or 
 
zt = at - .047 at-1 
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or, in terms of the original variate x, 
 
xt = xt-1 + at - .047at-1. 
 
From the Comprehensive R Analysis Network, CRAN, at Internet 
website https://cran.r-project.org/ , a program, arima, is available 
in the stats library, for estimating parameters of a univariate 
ARIMA model.  The call to this program is 
 
arima(x, order=c(p,d,q)). 
 
From the preliminary data analysis, reasonable values of the 
parameters are p = 0, d = 1, and q = 1.  Execution of the 
command 
 
arima(x, order=c(0,1,1)) 
 
produces the output shown in Figure 5. 
 
Figure 5.  Output for ARIMA Model (p,d,q) = (0,1,1) 
 
> model2<-arima(x, order=c(0,1,1)) 
 
> print(coef(model2)) 
        ma1  
-0.05336126  
 
> print(vcov(model2)) 
            ma1 
ma1 0.004805707 
 
> print(model2$sigma2) 
[1] 8.439229e-09 
 

https://cran.r-project.org/
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The estimated model parameters are θ1 = -.05336 and σa
2 = 

8.439229e-09.  The estimated model is 
 
xt = xt-1 + at - .053at-1 
 
with var(at) = 8.439229e-09. 
 
Figure 6 is a plot of the ACF of the model residuals. 
 
Figure 6.  Autocorrelation Function of ARIMA (p,d,q) = (0,1,1) 
Model Residuals 
 
> print(acf(model2$resid)) 
 
Autocorrelations of series ‘model2$resid’, by lag 
 
     0      1      2      3      4      5      6      7      8      9     10  
 1.000  0.007 -0.059 -0.051  0.127 -0.032 -0.172 -0.059 -0.091 -
0.086  0.011  
    11     12     13     14     15     16     17     18     19     20     21  
 0.017  0.085 -0.059  0.053  0.182  0.054  0.008 -0.049  0.011  
0.004 -0.014  
    22     23  
 0.003 -0.132 
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  The ACF is essentially zero, indicating that the model is an 
adequate representation of the process. 
 
For very simple models, such as the present one, a decision 
about model adequacy is generally based simply on a subjective 
assessment about the variance of the model residuals (smaller is 
preferred), the “whiteness” of the model residuals (i.e., visual 
flatness of the ACF, or results of a Box-Leung test) and the 
number of parameters (smaller is preferred), without 
consideration of information criteria such as the Akaike 
Information Criterion (AIC), Bayesian Information Criterion (BIC) 
or the Hannan-Quinn Information Criterion (HQC)).  Little 
additional effort is required to examine the information criteria, 
since they are generally computed automatically by ARIMA 
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estimation software.  For more complex models, the information 
criteria and other criteria are applied to suggest model structure 
and compare alternative models.  Simulation studies show have 
demonstrated the ability of the information criteria to correctly 
identify model structure.  Even for small models, however, it is 
standard procedure to assess features such as stationarity, 
invertibility, the “flatness” of the error sum of squares (likelihood 
function assuming that the model error term is normally 
distributed), and presence or absence of deterministic or random 
periodicities.  The primary purpose of this paper is to assess the 
availability of R routines for a variety of forecasting models and 
the effort involved in applying those models.  It is not intended as 
a tutorial in the development of mathematical forecasting models, 
and so little discussion of the various model adequacy is 
presented.  The cited references provide detailed treatment of 
these aspects of model development. 
 
The model is essentially a random walk.  For a random walk, the 
forecast is the most recent observed value of the series.  (Note 
that the various programs available to estimate ARIMA models 
are not consistent in the signs that they use for the φs and θs in 
the specification of the ARIMA model.  The R routine arima uses 
pluses on the θ terms, at difference with the specification used 
above (and by the Box-Jenkins book).  In what follows, we shall 
use the Box-Jenkins notation, which implies θ1 = .053). 
 
To construct forecasts, the following command is executed: 
 
The program output is shown in Figure 6. 
 
Figure 6.  12-step-ahead Forecast from Time t=240 for Estimated 
ARIMA Model 
 
> predict(model2, n.ahead=12) 
$pred 
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Time Series: 
Start = 241  
End = 252  
Frequency = 1  
 [1] 1.123879 1.123879 1.123879 1.123879 1.123879 1.123879 
1.123879 1.123879 
 [9] 1.123879 1.123879 1.123879 1.123879 
 
$se 
Time Series: 
Start = 241  
End = 252  
Frequency = 1  
 [1] 9.186528e-05 1.264984e-04 1.535071e-04 1.764286e-04 
1.966968e-04 
 [6] 2.150634e-04 2.319803e-04 2.477447e-04 2.625644e-04 
2.765911e-04 
[11] 2.899401e-04 3.027010e-04 
 
It is seen that the forecast is essentially the current value, 
modified slightly because of the nonzero value of θ1.  The 
standard errors of the forecasts are: 
 
*** 
 
Since the model is essentially a random walk, there is little 
information from the forecast that could be used to make 
profitable foreign-exchange trades. 
 
Some additional discussion of the univariate univariable ARIMA 
model is presented in Appendix A, including discussion of the 
forecast function and a formula for estimating the variance of the 
forecast errors. 
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A Seasonal Model 

 
The nonseasonal ARIMA model discussed above may be 
extended to include efficient representations of time series that 
exhibit seasonal behavior.  A much-cited example of a seasonal 
time series model is the “airline ticket sales” example presented in 
Box and Jenkins’ book and in many later publications. 
 
A data set for the airline ticket sales example is provided on the 
CRAN R website.   The dataset is named **. 
 
Figure7 presents a listing of the airline ticket sales data.  The data 
set are logarithms of monthly international airline ticket sales. 
 
Figure 7.  The Box-Jenkins Monthly International Ticket Sales 
Data Set 
 
  [1] 4.718499 4.770685 4.882802 4.859812 4.795791 4.905275 
4.997212 4.997212 
  [9] 4.912655 4.779123 4.644391 4.770685 4.744932 4.836282 
4.948760 4.905275 
 [17] 4.828314 5.003946 5.135798 5.135798 5.062595 4.890349 
4.736198 4.941642 
 [25] 4.976734 5.010635 5.181784 5.093750 5.147494 5.181784 
5.293305 5.293305 
 [33] 5.214936 5.087596 4.983607 5.111988 5.141664 5.192957 
5.262690 5.198497 
 [41] 5.209486 5.384495 5.438079 5.488938 5.342334 5.252274 
5.147494 5.267858 
 [49] 5.278115 5.278115 5.463832 5.459586 5.433722 5.493062 
5.575949 5.605802 
 [57] 5.468060 5.351858 5.192957 5.303305 5.318120 5.236442 
5.459586 5.424950 
 [65] 5.455321 5.575949 5.710427 5.680172 5.556828 5.433722 
5.313206 5.433722 
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 [73] 5.488938 5.451038 5.587249 5.594711 5.598422 5.752573 
5.897154 5.849325 
 [81] 5.743003 5.613128 5.468060 5.627621 5.648974 5.624018 
5.758902 5.746203 
 [89] 5.762052 5.924256 6.023448 6.003887 5.872118 5.723585 
5.602119 5.723585 
 [97] 5.752573 5.707110 5.874931 5.852202 5.872118 6.045005 
6.142037 6.146329 
[105] 6.001415 5.849325 5.720312 5.817111 5.828946 5.762052 
5.891644 5.852202 
[113] 5.894403 6.075346 6.196444 6.224558 6.001415 5.883322 
5.736572 5.820083 
[121] 5.886104 5.834811 6.006353 5.981414 6.040255 6.156979 
6.306275 6.326149 
[129] 6.137727 6.008813 5.891644 6.003887 6.033086 5.968708 
6.037871 6.133398 
[137] 6.156979 6.282267 6.432940 6.406880 6.230482 6.133398 
5.966147 6.068426 
 
Figure 8 presents a time-series plot of the data. 
 
Figure 8.  Plot of International Ticket Sales Data 
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The plot shows clearly that the series is strongly seasonal and 
nonstationary.  Transformation to a stationary variate can be 
accomplished for this time series by differencing.  Because of the 
strong 12-month seasonal period, the differences of interest are 
the first difference, D1 = (1 – B), the twelfth difference, D12 = (1 – 
B12), and the concatenation of the first and twelfth differences, 
D1D12 – (1 – B)(1 – B12).  The autocorrelations of the three 
transformed variates obtained by applying those difference 
operators are shown in Figures 9, 10 and 11. 
 
Figure 9.  Autocorrelation Function of First-Differenced Series 
 
 
Figure 10.  Autocorrelation Function of Twelfth-Differenced Series 
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Figure 11.  Autocorrelation Function of First- and Twelfth-
Differenced Series 
 
The ACF of the first- and twelfth-differenced series, 
 
zt = (1 – B) (1 – B12) xt 
 
Where xt denotes the original series (in logarithms), exhibits 
stationary behavior (i.e., it dies out quickly).  It has substantial 
autocorrelations for lags 1 and 13, suggesting that a model of the 
form 
 
zt = (1 – θ1)(1 – θ12)at 
 
Is a reasonable model structure to consider. 
 
The same R procedure arima as was used earlier is used to 
estimate the model parameters.  The procedure call is arima(V1, 
order=c(0,1,1), seasonal=list(order = c(0,1,1), period=12)), and 
the program model output is as follows: 
 
> model1<-arima(V1, order=c(0,1,1), seasonal=list(order = 
c(0,1,1), period=12)) 
 
> print(coef(model1)) 
       ma1       sma1  
-0.4018279 -0.5569452  
 
> print(vcov(model1)) 
               ma1          sma1 
ma1   0.0080359992 -0.0007254433 
sma1 -0.0007254433  0.0053435583 
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> print(model1$sigma2) 
[1] 0.001348034 
 
The estimates of the model parameters are θ1 = .40, θ12 = .56 and 
σa

2 = .00135. 
 
The ACF of the model residuals is 
 
> print(acf(model1$resid)) 
 
Autocorrelations of series ‘model1$resid’, by lag 
 
     0      1      2      3      4      5      6      7      8      9     10  
 1.000 -0.024  0.060 -0.140 -0.113  0.002  0.052 -0.065 -0.043  
0.111 -0.107  
    11     12     13     14     15     16     17     18     19     20  
-0.024  0.013  0.018  0.019  0.054 -0.170  0.023 -0.008 -0.076 -
0.095 
 
A plot of the ACF is shown in Figure 12. 
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The ACF of the model residuals indicates that they are a white 
noise series, so that the model is reasonable.  Hence we see that 
it was possible to obtain a reasonable model representation of 
this seasonal time series using but two parameters (besides σa2). 
 
Forecasts for the model from the last observation, extending 24 
time-steps into the future, are obtained by the procedure call 
predict(model1, n.ahead=24), which produces the following 
program output (forecast and forecast standard errors): 
 
> predict(model1, n.ahead=24) 
$pred 
Time Series: 
Start = 145  
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End = 168  
Frequency = 1  
 [1] 6.110186 6.053776 6.171715 6.199301 6.232557 6.368779 
6.507294 6.502907 
 [9] 6.324699 6.209008 6.063488 6.168025 6.206436 6.150025 
6.267965 6.295550 
[17] 6.328806 6.465029 6.603543 6.599156 6.420948 6.305258 
6.159737 6.264275 
 
$se 
Time Series: 
Start = 145  
End = 168  
Frequency = 1  
 [1] 0.03671561 0.04278290 0.04809071 0.05286830 0.05724856 
0.06131670 
 [7] 0.06513123 0.06873440 0.07215787 0.07542611 0.07855850 
0.08157069 
[13] 0.09008474 0.09549706 0.10061867 0.10549193 
0.11014979 0.11461852 
[19] 0.11891944 0.12307015 0.12708537 0.13097755 
0.13475737 0.13843402 
 
Summary of Univariate Univariable Models 
 
The class of univariate univariable models is able to describe the 
stochastic behavior of a wide range of real-world processes.  
Application of the Box-Jenkins’ iterative approach of model 
specification, diagnosis, and re-specification until a satisfactory 
model is found requires observations on a single variable of 
interest for at least 100 equally spaced time intervals, preferably 
200-400.  The process of model development requires knowledge 
of the Box-Jenkins methodology and on the order of an hour of 
time for data processing, statistical analysis of the raw data and 
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alternative model specifications, and documentation of the model 
development process and the final model. 
 
Computer software for performing the data analysis is available in 
a number of commercially available statistical program packages, 
such as Stata, SAS, and SPSS, in in the free R statistical 
software suite. 
 
Univariate univariable models are easy to construct, but the fact 
that they involve only the response variable and no explanatory 
variables limits their usefulness.  In financial applications, such as 
the forex price model developed above, many of the models are 
random walks or near-random-walks. 
 

Univariate multivariable models (transfer-function models, 

ARMAX models) 

 
In many applications, variables are present that have an influence 
on a variable of interest.  Taking such variables into account can 
increase the forecasting precision.  The variable of interest (to be 
forecast) is called by a variety of names, including the dependent 
variable, response variable, explained variable, output variable or 
controlled variable.  The variable that has an influence on the 
dependent variable is called the independent variable, 
explanatory variable, input variable, or control variable.  The 
independent variable may be a deterministic variable for which 
the level may be set, or it may be a random variable. 
 
The situation we consider here is the one in which the model error 
term is uncorrelated with the explanatory variable.  In terms of a 
causal model, the explanatory variable may have an effect on the 
response variable, but the response variable has no effect on the 
explanatory variable.  The explanatory variable is said to be an 
exogenous variable (with respect to the dependent variable). 
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The explanatory variable may be controlled or passively 
observed.  In a laboratory setting, it may be feasible to completely 
control the values of the input variable, such as in the situation in 
which a white noise signal is input to a filter to estimate the filter 
response.  In economic applications, the input variable may be 
controlled in some instances (such as randomized assignment of 
program inputs to clients) or simply observed (such as the 
weather).  The important thing is that the explanatory variable is 
not affected by the dependent variable.  In economic applications, 
the explanatory variable is called a leading indicator for the 
dependent variable, and the model is called a leading-indicator 
model.  In physical contexts, the model is called a transfer-
function model. 
 
We shall illustrate the development of a transfer-function model 
using an example presented in Box and Jenkins’ book.  The 
example involves sales and a leading indicator for sales.  The 
data set is available from the Internet (there is a reference to this 
on CRAN website (the R Datasets Package, BJsales, “Sales Data 
with Leading Indicator”, but it could not be located there). 
 
Figure 13 plots the sales data and Figure 14 plots the leading 
indicator. 
 
Figure 13.  Sales Data 
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Figure 14. Leading Indicator Data 
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The sales and leading-indicator series are clearly nonstationary.  
They can be transformed to stationary variates by taking one-
time-step differences.  Figures 15 and 16 display plots of the first-
differenced series. 
 
Figure 15.  Differenced Sales Data 
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Figure 16.  Differenced Leading Indicator 
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The first-differenced series exhibit stationary behavior, and the 
model parameters will be estimated for a transfer function in these 
variates. 
 
The formula for a transfer-function model involving a single input 
and a single output will now be discussed.  In this model, it is 
assumed that the input and output processes are stationary.  
Hence, when developing this model using the sales/indicator 
data, the model development will be done in terms of the first-
differenced variables, denoted as x (input) and y (output), where 
 
xt = (1 – B)xorig,t = xorig,t – xorig,t-1 
 
yt = (1 – B)yorig,t = yorig,t – yorig,t-1 
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where xorig and yorig denote the original (raw, untransformed) data. 
 
The model to be estimated is 
 

𝑦𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑥𝑡−𝑏 + 𝑛𝑡 
 
where 
 

𝑦𝑡 = ∇𝑑𝑌𝑡 
 

𝑥𝑡 = ∇𝑑𝑋𝑡 
 

𝑛𝑡 = ∇𝑑𝑁𝑡 
 
are stationary processes and 
 

𝑛𝑡 = 𝜙−1(B)θ(B)𝑎𝑡 . 
 
The notation here follows that of the 5th edition of the Box-Jenkins 
book, Time Series Analysis, Forecasting and Control. 
 
Just as the autocorrelation function of a univariate univariable 
time series is useful for suggesting the structure of a univariate 
ARMA model, the cross-correlation function (CCF) of the input 
and output series is useful for suggesting the structure of a 
transfer-function model.  In general, however, it is difficult to 
ascertain the model structure from the CCF of the input and 
output, even when these are stationary.  After applying a 
“prewhitening” transformation to the two series, however, the CCF 
can be used very effectively to identify the model structure. 
 
From this point forward, it we shall be working with the stationary 
variates xt and yt. 
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The prewhitening transformation is the transformation that 
transforms the input variable xt into a white noise sequence.  That 
is, if the ARMA model for xt is 
 

𝑥𝑡 = 𝜙𝑥
−1𝜃𝑥𝛼𝑡, 

 
then the transformation that transforms xt into a white-noise 
series is 

  
𝛼𝑡 = 𝜃𝑥

−1𝜙𝑥𝑥𝑡 . 
 
It can be shown that the CCF between the prewhitened xt series 
and the series obtained by applying the same transformation to 
the yt is proportional to the impulse response function of the 
model. 
 
This is easy to show.  Let us write the transfer-function model in 
the form 
 

𝑦𝑡 = 𝑣0𝑥𝑡 + 𝑣1𝑥𝑡−1 + 𝑣2𝑥𝑡−2 + ⋯ + 𝑛𝑡 = 𝑣(𝐵)𝑥𝑡 + 𝑛𝑡 
 
where v0, v1, v2 are the values of the impulse response function.  

Let us apply the prewhitening transformation 𝜃𝑥
−1𝜙𝑥  to both sides 

of this model equation, to obtain: 
 

𝛽𝑡 = 𝜃𝑥
−1𝜙𝑥𝑦𝑡 = 𝑣(𝐵)𝜃𝑥

−1𝜙𝑥𝑥𝑡 + 𝜃𝑥
−1𝜙𝑥𝑛𝑡 = 𝑣(𝐵)𝛼𝑡 + 𝜃𝑥

−1𝜙𝑥𝑛𝑡 
 

Now, multiply both sides of this equation by 𝛼𝑡−𝑘 and take 
expectations, to obtain: 
 

𝛾𝛼𝛽(𝑘) = 𝑣𝑘𝜎𝛼
2 

 
where 
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𝛾𝛼𝛽(𝑘) = 𝐸[𝛼𝑡−𝑘𝛽𝑡] 

 
Is the cross-covariance at lag +k between the series αt and βt.  
Hence 
 

𝑣𝑘 =
𝛾𝛼𝛽(𝑘)

𝜎𝛼
2  

 
 or, in terms of cross-correlations, 
 

𝑣𝑘 =
𝜌𝛼𝛽(𝑘)𝜎𝛽

𝜎𝛼
2 , 𝑘 = 0,1,2, …. 

 
So, the cross-correlation function between the prewhitened input 
and the similarly transformed output is directly proportional to the 
impulse response function.  This fact can be used to suggest a 
model structure, such as the size of the lag, b, between x and y, 
and the degrees of δ and ω. 
 
The first step in the identification process is to obtain an ARMA 
representation for the input.  Using the same identification 
process discussed earlier for the univariate univariable ARMA 
models, this is seen to be 
 
xt = αt - 0.4744αt-1 
 
with 𝜎α

2 = .07794. 
 
The prewhitening filter is hence 
 
(1 - .47B)-1. 
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Applying this filter to the input yields at.  The R commands for 
developing this model and this filter to the output (t) are 
 
#Determine ARMA model for input, x. 
nm1=arima(x,order=c(0,0,1)) 
print(nm1)  # Prints the ARIMA coefficients for x 
print(summary(nm1)) 
f1=c(-nm1$coef[1:1])  # Creates a filter to transform y 
print(f1) 
#Use convolution method for AR model, recursive method for MA 
model. 
#Note that this is different from the gas-furnace model. 
yf = filter(y,f1,method=c("recursive"),sides=1) 
print(yf) 
yprew=yf[2:149]  # transformed (i.e., prewhitened) y 
print(yprew) 
xprew=nm1$residuals[2:149]  # transformed x 
print(xprew) 
#Check to see that filtering produces the same values of the 
residuals. 
xf = filter(x,f1,method=c("recursive"),sides=1) 
print(xf) 
 
The R commands for calculating the cross-correlation function of 
the prewhitened x and similarly transformed y are: 
 
CCF =ccf(yprew,xprew, ylab="CCF", main="Cross-correlations 
after prewhitening")  # computes the cross-correlations 
print(sd(yprew)) 
print(sd(xprew)) 
vk=(sd(yprew)/sd(xprew))*CCF$acf  # impulse response function 
print(vk) 
 
Figure 17 shows a plot of the cross-correlation of the prewhitened 
x and similarly transformed y. 
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Figure 17.  Cross-correlation function of prewhitened input and 
similarly transformed output 
 

 
 
This plot clearly shows a lag of b = 3 between the input and 
output response, and that after accounting for a relationship 
between y and x, the resulting series exhibits autoregressive 
behavior. 
 
This suggests a model of the form 
 

𝑦𝑡 = 𝜇 +
𝜔0

1 − 𝛿𝐵
𝑥𝑡−3 + (1 − 𝜃𝐵)𝑎𝑡 
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The R code for estimating this model and examining the model 
residuals is 
 
m1=tfm1(y,x,orderX=c(1,0,3),orderN=c(0,0,1)) 
print(m1) 
print(summary(m1)) 
print(names(m1))  # check contents of output 
print(m1$estimate)  # model coefficients 
print(m1$varcoef)  # variances of model coefficients 
print(m1$sigma2)  # residual variance 
print(acf(m1$residuals))  # acf of the residuals 
print(ccf(m1$residuals,x, ylab="CCF"))  # cross-correlation 
between input series and residuals 
print(ccf(m1$residuals,xprew, ylab="CCF"))  # cross-correlation 
between prewhitened input and residuals 
 
The output for the model estimation is 
 
Transfer function coefficients & s.e.:  
in the order: constant, omega, and delta: 1 1 1  
        [,1]   [,2]    [,3] 
v    0.02811 4.6943 0.72646 
se.v 0.00995 0.0558 0.00417 
ARMA order:  
[1] 0 0 1 
ARMA coefficients & s.e.:  
            [,1] 
coef.arma 0.5247 
se.arma   0.0697 
 
> print(m1) 
$estimate 
[1] 0.02810906 4.69429153 0.72646203 0.52474147 
 
$sigma2 
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[1] 0.04997414 
 
That is, the estimated model parameters are μ = .02811, ω = 
4.6943, δ = .7265, σa

2 = .04997.  The estimation command also 
estimates the ARMA model for the input, which is estimated to be 
 

𝑥𝑡 = (1 − .5247𝐵)𝛼𝑡 
 

with 𝜎𝛼
2=.0697. 

  
The parameter estimates agree well with the results reported in 
the Box-Jenkins book (page 468), except for the parameter in the 
ARMA model for x, which is estimated as .32 rather than .4744 in 
the arima program and .5247 in the transfer-function program 
(with model error variance .0676 rather than .07794 (from the 
arima program) or .0697 (from the transfer-function estimation 
program). 
 
Figure 18 shows a plot of the ACF of the model residuals, Figure 
19 shows a plot of the CCF between the model residuals and the 
input, and Figure 20 shows a plot of the CCF between the model 
residuals and the prewhitened input. 
 
Figure 18. Plot of autocorrelation function of model residuals 
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Figure 19. Plot of cross-correlation function of model residuals 
and input 
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Figure 20. Plot of cross-correlation function of model residuals 
and prewhitened input. 
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These plots indicate that the estimated model is a good 
representation of the sales/leading indicator data. 
 
Forecasts for the Transfer-Function Model 
 
The R library, MTS, which contains the procedure for estimating 
transfer functions having one or two inputs, does not include a 
forecast procedure.  To make predictions with this model in R, 
such an R procedure would have to be identified or developed.  
Other packages (than MTS) include ARMAX routines, but these 
were not investigated.  The transfer-function model can be 
represented as a special case of the vector time series models to 
be considered in the next section, and software for analyzing the 
latter can be adapted to analysis of the transfer-function model. 
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A discussion of how to make forecasts for a transfer-function 
model using a multivariate model (which is discussed in the next 
section) is presented on page 512, of the Box-Jenkins book (5th 
edition), or on page 30 of the Tsay book. 
 
Transfer-Function Models with More than One Input 
 
The Box-Jenkins book discusses transfer function models having 
more than one input, and discusses the one-input and two-input 
cases in detail.  A problem with models involving more than one 
input is that the number of parameters increases (roughly in 
proportion to the number of inputs), so that model development 
becomes more difficult.  This is not a problem is the inputs are 
generated, as in a simulation model or designed experiment, but 
the task of model identification (specification of the structure of 
the model, prior to estimation) becomes difficult. 
 
As the number of explanatory variables included in the model 
increases, the relative magnitude of the sources of variation shifts 
from the past to the present.  With a large number of explanatory 
variables, the model essentially becomes a large multiple 
regression model, possibly with a serially correlated error term.  
This sort of model is generally referred to as a Cochrane-Orcutt or 
Prais-Winsten model.  In these models, the model for the error 
term is restricted to an autoregressive model of order one.  This 
restriction is not overly restricting, since as the number of 
explanatory variables included in a model, the serial correlation of 
the disturbances tends to decrease. 
 
Models having a large number of explanatory variables are not 
very useful for forecasting.  The problem is that to make 
forecasts, it is necessary to specify future values of the 
explanatory variables.  In general, the future values of leading 
indicators are not known.  The model can make reasonable 
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forecasts for a number of time steps into the future equal to the 
lag of the leading indicator(s).  Models having a large number of 
explanatory variables are more useful for making estimates 
conditional on values of the explanatory variables in the current 
time period (such as estimates for different regions, at the present 
time), not estimates (predictions, forecasts) conditional on values 
of the explanatory variable in the future. 
 
For models containing explanatory variables, there are two types 
of forecasts.  The first type is unconditional forecasts.  These 
forecasts may be calculated by forecasting the explanatory 
variables and using these forecasts for their future values.  Note 
that for such forecasts, it does not matter whether the model of 
the relationship of the dependent variable to the explanatory 
variables is correctly specified.  The second type of forecast is 
forecasts that are conditional on specified values of one or more 
input variables.  This type of forecast is desired for policy analysis 
and control applications.  For this type of forecast, it is necessary 
that the time-series model be developed from data in which the 
input variables were controlled in the same fashion as in the 
application (or from a causal model). 
 
To reiterate, the essential restriction on model forecasts is that a 
model may be used to make forecasts only in a data-generating 
context similar to that for which the model was developed.  If the 
model is developed from input data that were controlled, then the 
model may be used to forecast output conditional on similar 
changes to the control variables.  If the model is developed from 
input data that were simply observed (not controlled), then, 
absent a valid causal model that describes the causal 
relationships among the model variables, the model is not useful 
for making predictions when the input is controlled. 
 
Summary 
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This example demonstrates the power of the Box-Jenkins 
methodology to represent complex multidimensional processes 
very well and efficiently (i.e., with a very small number of 
parameters). 
 
The amount of time involved to perform the data processing, 
analysis, estimation, and documentation for this model 
development, for someone familiar with the Box-Jenkins 
methodology and the R commands involved to implement it, is on 
the order of a couple of hours (for a “clean” data set). 
 

Multivariate models (VAR, VARMA and VARMAX models) 

 
For the univariate models just discussed, the model could actually 
involve more than one random variable – the error term for the 
model of the dependent variable conditional on the independent 
variables, and the error terms for the model(s) of the independent 
variables.  The essential requirement was that the error term for 
the model of the dependent variable conditional on the 
independent variables was a one-dimensional random variable.  
The situation may be described by saying that there is a 
univariate response variable, or a response variable having a 
one-dimensional probability distribution function (conditional on 
the explanatory variables). 
 
We shall now consider the case in which there are more than one 
response variables, and they have a nontrivial multidimensional 
joint distribution function.  A multivariate random variable is 
represented as a vector of random variables having a 
nondegenerate multidimensional joint probability distribution.  
Examples of multivariate variables include: 
 
Prices of currency pairs in different markets, such as EUR/USD, 
GPB/USD and USD/CHF. 
US unemployment rate, inflation rate, and interest rate. 
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Price and volume data for a financial instrument (such as a stock 
or commodity price) 
 
For the examples presented above, the components of the 
multivariate random variable mutually affect each other.  (They 
could be stochastically independent, but in that case the behavior 
of the individual components could be analyzed using univariate 
models.) 
 
The time series models used to describe the behavior of 
multivariate random variables are a direct extension of the models 
used to describe the behavior of univariate random variables.  
The model formulas are similar, with some scalars replaced by 
vectors and some vectors replaced by matrices. 
 
In the univariate case, moving average components are common.  
Moving average components are less common in multivariate 
time series models, because when several variables are included 
in a model, the autocorrelational complexity of the model error 
term often decreases. 
 
Univariate time series models are called AR, MA, ARMA, ARIMA 
and ARMAX.  The terminology is analogous for multivariate time 
series models, with the prefix term “vector” added, as in VAR, 
VMA, VARMA, VARMAX.  The term “integrated” is usually not 
included in the vector acronyms. 
 
Let Zt = (z1t,…,zkt)’, t = 0, +1, +2,…, denote a k-dimensional time-
series vector of random variables.  The following is a general 
formula for a vector autoregressive moving average (or VARMA) 
process. 
 

(𝒁𝑡 − 𝝁) = ∑ 𝚽𝑗(𝒁𝑡−𝑗 − 𝝁) = 𝒂𝑡 − ∑ 𝚯𝑗𝒂𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑗=1
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where at is a vector white noise process with mean vector 0 and 
covariance matrix Σ = E[atat’].  The process is referred to as a 
VARMA process whether Zt is stationary or not. 
 
A vector white-noise process is a sequence of random vectors 
…,a1,…,at,… with at = (a1t,…,akt)’ such that E[at] = 0, E[atat’] = Σ, 
and E[ata’t+r] for r ≠ 0.  Its covariance matrices Γ(r) are given by 
 

Γ(𝑟) = 𝐸[𝒂𝑡𝒂𝑡+𝑟
′ ] = {

𝚺 for r = 0
𝟎 𝑓𝑜𝑟 𝑟 ≠ 0

. 

 
The k x k covariance matrix Σ is assumed to be positive definite 
(otherwise the dimension k of the process could be reduced). 
 
While many features of vector time series models are similar to 
those for univariate time series models, there are some significant 
differences: 
 

A multivariate process with model as represented above is 
stationary if the roots of det{I – ΦB} = 0 exceed one in 
absolute value. 
A multivariate process is invertible if the roots of det{Θ(B)} 
exceed one in absolute value. 
The parametric representation of a VARMA process is not 
unique, that is, different parametric representations may give 
rise to the same infinite MA representation.  (VAR and MA 
models are unique.)  This means that the VARMA model is 
not identified.  This problem is overcome by imposing 
restrictions on the structural specification. 
As the number of variables (dimensionality) of the process 
increases, the number of model parameters increases 
rapidly.  This situation leads to difficulties in identification, 
estimation, interpretation, validation and application. 
Additional methodologies are available to assist identification 
of the model structure. 



50 
 

The phenomenon of cointegration. 
 
Detailed explanations of vector autoregressive moving average 
processes, including sample R code to conduct analysis, are 
presented in a number of texts, including the books by Box, 
Jenkins, Reinsel and Lyung; Tsay, and Lütkepohl (cited in the 
References section at the end). 
 
Rather than reproduce an example from one of these texts, we 
shall present an example based on an article about vector 
autoregressive processes that is available for free on the Internet: 
 
Stock, James H. and Mark W. Watson, “Vector Autoregressions,” 
Journal of Economic Perspectives—Volume 15, Number 4 —Fall 
2001—Pages 101–115, posted at   
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.15.4.101  
 
We shall perform the analysis described in this article using 
procedures available in the MTS R package (which is used in the 
Box-Jenkins and Tsay books). 
 
The approach used for identification of the structure of 
multivariate time series differs somewhat from that used for 
univariate multivariable models.  A reason for this is that in many 
multivariate applications, it is desired to estimate impulse 
responses for a larger number of time-steps into the future than in 
many short-term-forecasting applications.  To do this, it is 
necessary to develop a model that retains information about the 
levels of the variables, not just fluctuations in them.  For this 
reason, it is not desirable to difference the data, or to prewhiten it, 
since those transformations removes the long-term mean and the 
local level.  Another reason for not applying differencing to 
variates prior to model development in multivariate applications is 
that different series may have different orders of integration (i.e., 
the number of differences required to achieve stationarity).  

https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.15.4.101
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Applying the same number of differences to all series when one 
series did not require it would lead to a noninvertible model.  
Another situation in which uniform differencing is inappropriate is 
in the analysis of cointegrated series (for which converting each 
series to a stationary series prior to the analysis would lose 
information about cointegration). 
 
A problem that arises is that in the absence of prewhitening, it is 
difficult to use the cross-correlation function as a guide to model 
structure.  For multivariate time series analysis, a more useful 
guide to identifying model structure are the various “information” 
criteria, such as the Akaike Information Criterion (AIC), the Bayes 
Information Criterion (BIC) and the Hannan-Quinn Information 
Criterion (HQC). 
 
Figure 21 shows a plot of the three series of interest in the Stock-
Watson article.  They are quarterly inflation rate, unemployment 
rate, and interest rate (federal funds rate) for the United States.  
These data are available from the Federal Reserve Bank of St. 
Louis website (Federal Reserve Economic Data (“FRED”) at 
Internet website https://fred.stlouisfed.org/ ).  For the Stock-
Watson article, data were used from the time period 1960-2000.  
For the analysis presented here, data are used for the time period 
1970 – 2019.  Since the analysis time period is somewhat 
different, the analysis results differ somewhat. 
 
Figure 21a.  Monthly US Inflation Rate, 1970-2019 
 

https://fred.stlouisfed.org/
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Figure 21b.  Monthly US Unemployment Rate, 1970-2019 
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Figure 21c.  Monthly US Interest Rate, 1970-2019 
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Figure 21 shows a plot of the three information criteria.  The 
lowest curve is the AIC, the middle curve the BIC, and the upper 
curve the HQC.  This plot suggests that a VAR of order 3 or four 
should be reasonable.  Since the Stock-Watson article used order 
4, that is used here. 
 
The MTS R command for fitting a VAR of order 4, and the model 
output from program VARMA, is as follows. 
 
m2=VARMA(x, p = 4, q = 0, include.mean = T, fixed = NULL, 
beta=NULL, sebeta=NULL, prelim = F, details = F, thres = 2) 
 
With multivariate models, there are a very large number of 
parameters involved (both model coefficients and model error 
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covariances).  For the model specified above, there are 39 
parameters.  The parameters are correlated, and their 
interpretation is difficult.  It is more customary to present results 
for a multivariate VAR or VARMA model in terms of the forward 
error variance decomposition and the impulse response function. 
 
The MTS R command for the forward error variance 
decomposition is 
 
mFEV=FEVdec(Phi = m2$Phi, Theta = m2$Theta, Sig = 
m2$Sigma, lag = 12) 
 
and the corresponding model output is 
 
Order of the ARMA mdoel:   
[1] 4 0 
Standard deviation of forecast error:   
          [,1]      [,2]      [,3]      [,4]      [,5]     [,6]     [,7] 
[1,] 0.2824465 0.4948000 0.7153921 0.9130447 1.0851310 
1.231866 1.359084 
[2,] 0.2290792 0.4284132 0.6155420 0.7810687 0.9220169 
1.038173 1.131666 
[3,] 0.8303473 1.2903207 1.5572701 1.8140999 2.0486092 
2.242632 2.411987 
         [,8]     [,9]    [,10]    [,11]    [,12]    [,13] 
[1,] 1.469349 1.565370 1.649479 1.723358 1.788350 1.845651 
[2,] 1.205451 1.262725 1.306838 1.340906 1.367588 1.389067 
[3,] 2.564053 2.696413 2.812222 2.915143 3.006609 3.088375 
Forecast-Error-Variance Decomposition  
Forecast horizon:  1  
            [,1]       [,2]      [,3] 
[1,] 1.000000000 0.00000000 0.0000000 
[2,] 0.005533371 0.99446663 0.0000000 
[3,] 0.007649980 0.05437214 0.9379779 
Forecast horizon:  2  
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            [,1]        [,2]        [,3] 
[1,] 0.990185337 0.005002979 0.004811684 
[2,] 0.003643369 0.991302563 0.005054068 
[3,] 0.070694754 0.201267387 0.728037859 
Forecast horizon:  3  
           [,1]       [,2]       [,3] 
[1,] 0.96086409 0.01743783 0.02169808 
[2,] 0.01313491 0.96984853 0.01701656 
[3,] 0.06450454 0.31051627 0.62497919 
Forecast horizon:  4  
           [,1]      [,2]       [,3] 
[1,] 0.92924655 0.0318501 0.03890335 
[2,] 0.02261812 0.9408154 0.03656650 
[3,] 0.06325783 0.3726609 0.56408127 
Forecast horizon:  5  
           [,1]       [,2]       [,3] 
[1,] 0.90393099 0.04650739 0.04956162 
[2,] 0.03147566 0.90851331 0.06001103 
[3,] 0.07111132 0.42251055 0.50637813 
Forecast horizon:  6  
           [,1]       [,2]       [,3] 
[1,] 0.88406724 0.05966061 0.05627215 
[2,] 0.03894620 0.87716323 0.08389056 
[3,] 0.07952439 0.46351539 0.45696022 
Forecast horizon:  7  
           [,1]      [,2]      [,3] 
[1,] 0.86855360 0.0714132 0.0600332 
[2,] 0.04557927 0.8472834 0.1071373 
[3,] 0.08896826 0.4905841 0.4204477 
Forecast horizon:  8  
           [,1]      [,2]       [,3] 
[1,] 0.85659892 0.0817998 0.06160128 
[2,] 0.05185917 0.8188446 0.12929622 
[3,] 0.10099468 0.5080493 0.39095604 
Forecast horizon:  9  
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           [,1]       [,2]       [,3] 
[1,] 0.84728488 0.09079898 0.06191614 
[2,] 0.05805979 0.79197325 0.14996696 
[3,] 0.11391896 0.51920230 0.36687873 
Forecast horizon:  10  
          [,1]       [,2]       [,3] 
[1,] 0.8399831 0.09848148 0.06153537 
[2,] 0.0642759 0.76676428 0.16895982 
[3,] 0.1274378 0.52475940 0.34780276 
Forecast horizon:  11  
           [,1]      [,2]       [,3] 
[1,] 0.83430054 0.1049582 0.06074122 
[2,] 0.07056065 0.7433304 0.18610897 
[3,] 0.14172129 0.5259661 0.33231261 
Forecast horizon:  12  
          [,1]      [,2]       [,3] 
[1,] 0.8299265 0.1103278 0.05974564 
[2,] 0.0769084 0.7218599 0.20123166 
[3,] 0.1563640 0.5241587 0.31947725 
Forecast horizon:  13  
           [,1]      [,2]       [,3] 
[1,] 0.82661386 0.1147072 0.05867889 
[2,] 0.08328338 0.7025004 0.21421627 
[3,] 0.17107228 0.5201138 0.30881392 
 
The MTS R command to generate the impulse response function 
is: 
 
mirf1=VARMAirf(Phi = m2$Phi, Theta = m2$Theta, Sigma = 
m2$Sigma, lag = 12, orth = FALSE) 
 
The graph of the impulse response function is presented in Figure 
21. 
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These results are in general agreement with those presented in 
the Stock-Watson article.  Note that the impulse response 
function graphs presented in the article are transposed from those 
presented here. 
 
Because of the correlations among the variates, changes in one 
of them will introduce changes in the others.  To address this 
issue, it is standard practice to transform the original variables to 
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orthogonal variables (principal components, singular value 
decomposition, orthogonalization), and present the impulse 
response functions in terms of the transformed variates.  The 
MTS R code calculates impulse response functions for both the 
original variates (“ORIG”) and the orthogonalized  variates 
(“ORTH”), but graphs are included here only for the original 
variates. 
 
The MTS R code to make forecasts is VARMApred(m2,12), and 
the output produced by this command is 
 
> VARMApred(m2,12) 
Predictions at origin  197  
       infl  unem  ffr3 
 [1,] 1.630 3.962 2.391 
 [2,] 1.639 4.043 2.521 
 [3,] 1.701 4.159 2.566 
 [4,] 1.779 4.292 2.549 
 [5,] 1.862 4.431 2.543 
 [6,] 1.939 4.567 2.541 
 [7,] 2.011 4.696 2.534 
 [8,] 2.077 4.814 2.537 
 [9,] 2.139 4.921 2.549 
[10,] 2.197 5.017 2.569 
[11,] 2.251 5.101 2.597 
[12,] 2.301 5.175 2.634 
Standard errors of predictions  
        [,1]   [,2]   [,3] 
 [1,] 0.2824 0.2291 0.8303 
 [2,] 0.4948 0.4284 1.2903 
 [3,] 0.7154 0.6155 1.5573 
 [4,] 0.9130 0.7811 1.8141 
 [5,] 1.0851 0.9220 2.0486 
 [6,] 1.2319 1.0382 2.2426 
 [7,] 1.3591 1.1317 2.4120 
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 [8,] 1.4693 1.2055 2.5641 
 [9,] 1.5654 1.2627 2.6964 
[10,] 1.6495 1.3068 2.8122 
[11,] 1.7234 1.3409 2.9151 
[12,] 1.7883 1.3676 3.0066 
 
Summary 
 
This section shows that very powerful R software is available for 
implementing VAR models.  Similar software is available for MA 
and VARMA models, but only the VAR models are illustrated 
here.  As mentioned earlier, once several variables are included 
in a model, the need to include AR or MA components is 
lessened.  MA terms may be included in a multivariate time series 
model for a number of reasons, including: 
 

An MA or VARMA representation may be a more efficient 
representation (i.e., involve fewer parameters or achieve a 
higher level of precision for a similar number of parameters) 
of a time series than a VAR representation. 
Overdifferencing may incorporate moving-average behavior. 
The nature of a physical process (such as the replacement 
of sample units in a rotation panel sample) may incorporate 
moving-average behavior. 

 

Special Topics (ARCH and GARCH Models; Kalman Filter; 

Bayesian Estimation; Structural Models; Econometric Models) 

 
ARCH and GARCH Models 
 
For the models discussed thus far, the assumption has been 
made that the variance (or covariance) of the model error term is 
constant, or “homoscedastic.”  In many applications, this 
assumption does not hold.  In financial series, for example, it is 
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common for the variance of a process to increase when trading 
activity increases.  A class of models has been developed that 
allow for the process variance to vary.  These models are called 
“conditionally heteroscedastic,” since the variance is constant 
given certain past information. 
 
The basic process of this type is the autoregressive conditional 
heteroscedasticity model, or ARCH model.  In that model, the 
process error variance is assumed to depend on past values of 
the squared model error term.  The basic model may be a 
regression-type model or an ARMA model. 
 
The basic ARCH model may be formulated as follows.  Suppose 
that at denotes the model error term, such as in an ARMA model 
or a regression model.  It is assumed that 
 
at = σtet 
 
where et is a sequence of random variables with mean 0 and 
variance 1, and 
 

𝜎𝑡
2 = 𝛾0 + 𝛾1𝑎𝑡−1

2 + ⋯ + 𝛾𝑚𝑎𝑡−𝑚
2  

 
where ϒ0 > 0, ϒi >= 0 for i =1…,m-1, and ϒm > 0.  That is, the 
model error variance σt

2 follows a moving average process.  The 
inequality constraints assure that σt

2 is positive.  The additional 
constraint 
 

∑ 𝛾𝑖 < 1
𝑚

𝑖=1
 

 
ensures that the at are covariance stationary with finite 
unconditional variance σa

2. 
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The preceding model is called an ARCH model of order m, or 
ARCH(m). 
 
In the preceding formulation, the model for the error variance is a 
moving average model.  (The adjective “autoregressive” in ARCH 
refers to the main process, not to the variance process.)  The 
preceding ARCH model may be extended to a generalized 
autoregressive conditional heteroscedasticity model, or GARCH 
model, by allowing the process for the model error variance to be 
an ARMA process: 
 

𝜎𝑡
2 = 𝛾0 + 𝛾1𝑎𝑡−1

2 + ⋯ + 𝛾𝑚𝑎𝑡−𝑚
2 + 𝛿1𝜎𝑡−1

2 + 𝛿2𝜎𝑡−2
2 + ⋯ + 𝛿𝑘𝜎𝑡−𝑘

2 . 
 
This model is called a GARCH model of order (m,k) or 
GARCH(m,k). 
 
An example of an ARCH regression-type model is:  
 
yt = Xtβ +at 
 
where the variance, σt

2, of at follows a MA process. 
 
There are a variety of ARCH-type models.  For example, the 
volatility of a financial time series often increases when the series 
is falling.  A model that represents this type of behavior is the 
nonlinear asymmetric GARCH, or NAGARCH. 
 
Routines for estimating ARCH-type models are available in a 
number of R libraries, for example procedure garch in the tseries 
package (for univariate time series) or the gogarch routine in the 
Generalized Orthogonal GARCH (GO-GARCH) model package.  
Examples will not be presented here. 
 
Kalman Filtering 
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The models and R software discussed above assumed a high 
degree of regularity in both the models and the data.  In general, it 
was assumed that data were available at regularly spaced time 
intervals, that there were no missing data, and that the model 
parameters were time-invariant. 
 
A more general class of models, that relaxes these assumptions, 
is the class of Kalman filter models.  The Kalman filter was 
developed by Richard Kalman in 1960 as a general recursive 
algorithm for predicting the state of a dynamic system.  It is based 
on the following state-space representation of a system.  (The 
notation here follows James D. Hamilton, Time Series Analysis 
(Wiley, 1994), pp. 372-408.) 
 
For the discussion here, we shall consider the case in which the 
model parameters are not time-varying. 
 
Let yt denote an (n x 1) vector of variates observed at time t.  Let 
the (r x 1) possibly unobserved vector ξt denote the state (or state 
vector) of the system at time t.  The state-space representation of 
the dynamics of yt is given by the following system of equations: 
 

𝝃𝑡+1 = 𝐹𝝃𝑡 + 𝒗𝑡+1 

𝒚𝑡 = 𝐴′𝒙𝑡 + 𝐻′𝝃𝑡 + 𝒘𝑡 
 
where F, A’ and H’ are matrices of parameters of dimension (r x 
r), (n x k), and (n x r), respectively, and xt is a (k x 1) vector of 
exogenous or predetermined variables.  The first equation is 
called the state equation (or the transition equation, or the plant 
equation), and the second equation is called the observation 
equation (or the measurement equation).  The (r x 1) vector vt, 
and the (n x 1) vector wt are vector white noise processes: 
 

𝐸(𝒗𝑡𝒗𝑡
′ ) = {

𝑄 𝑓𝑜𝑟 𝑡 = 𝜏
𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐸(𝒘𝑡𝒘𝑡
′ ) = {

𝑅 𝑓𝑜𝑟 𝑡 = 𝜏
𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Where Q and R are (r x r) and (n x n) matrices, respectively.  The 
disturbances vt and wt are assumed to be uncorrelated at all lags: 
 

𝐸(𝒗𝑡𝒘𝑡
′ ) = 𝟎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 𝑎𝑛𝑑 𝜏. 

 
The statement that xt is exogenous or predetermined means that 
xt provides no information about ξt+s or wt+s for s = 0, 1, 2,… 
beyond that contained in yt-1, yt-2,…, y1.  For example, xt could 
include lagged values of y or variables that are uncorrelated with 
ξτ and wτ for all τ. 
 
There are a number of R packages that provide routines for 
Kalman filtering.  A review of some of them is provided in the 
article “Kalman Filtering in R,” by Fernando Tusell (Journal of 
Statistical Software, March 2011, Volume 39, Issue 2. 
http://www.jstatsoft.org/ ).  The Kalman Filter and Smoother 
(KFAS) package, described at https://cran.r-
project.org/web/packages/KFAS/index.html , implements most of 
the algorithms described in the book, Time Series Analysis by 
State Space Methods by J. Durbin and S. J. Koopman 2nd ed. 
(Oxford University Press, 2012). 
 
One of the interesting features of the Kalman filter is that the 
forecast function is the same for Bayesian and nonBayesian 
implementations. 
 
Bayesian Estimation 
 
There are a large number of packages available in R to perform 
Bayesian estimation.  A recent summary of such article is 
presented in the article “CRAN Task View: Bayesian Inference” by 

http://www.jstatsoft.org/
https://cran.r-project.org/web/packages/KFAS/index.html
https://cran.r-project.org/web/packages/KFAS/index.html
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Jong Hee Park, posted at https://cran.r-
project.org/web/views/Bayesian.html . 
 
Bayesian models are of particular importance for applications in 
developing countries, in which the amount of time series data 
required to develop time series models is limited or inadequate. 
 
Structural Models 
 
Forecasting models may be classified into two major categories, 
structural models and non-structural models.  Here follows a 
description of structural models from the Wikipedia article on 
structural estimation. 
 

“Structural estimation is a technique for estimating deep 
"structural" parameters of theoretical economic models. The 
term is inherited from the simultaneous equations model. In 
this sense "structural estimation" is contrasted with 
"reduced-form estimation," which is the statistical 
relationship between observed variables. 
 
The difference between a structural parameter and a 
reduced-form parameter was formalized in the work of the 
Cowles Foundation.  A structural parameter is also said to 
be "policy invariant" whereas the value of reduced-form 
parameter can depend on exogenously determined 
parameters set by public policy makers. The distinction 
between structural and reduced-form estimation within 
"microeconometrics" is related to the Lucas critique of 
reduced-form macroeconomic policy predictions. 
 
The original distinction between structure and reduced-form 
was between the underlying system and the direct 
relationship between observables implied by the system. 
Different combinations of structural parameters can imply the 

https://cran.r-project.org/web/views/Bayesian.html
https://cran.r-project.org/web/views/Bayesian.html
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same reduced-form parameters, so structural estimation 
must go beyond the direct relationship between variables. 
 
Many economists now use the term "reduced form" to mean 
statistical estimation without reference to a specific 
economic model. For example, a regression is often called a 
reduced-form equation even when no standard economic 
model would generate it as the reduced form relationship 
between variables. 
 
These conflicting distinctions between structural and 
reduced form estimation arose from the increasing 
complexity of economic theory since the formalization of 
simultaneous equations estimation. A structural model often 
involves sequential decisions making under uncertainty or 
strategic environments where beliefs about other agents' 
actions matter. Parameters of such models are estimated 
not with regression analysis but non-linear techniques such 
as generalized method of moments, maximum likelihood, 
and indirect inference. The reduced-form of such models 
may result in a regression relationship but often only for 
special or trivial cases of the structural parameters.” 

 
 Related to the issue of structural equation modeling is the Lucas 
critique, that discusses the difficulty in using large-scale 
econometric models for policy analysis.  Here follows discussion 
from the Wikipedia article on that topic. 
 

The Lucas critique, named for Robert Lucas's work on 
macroeconomic policymaking, argues that it is naive to try to 
predict the effects of a change in economic policy entirely on 
the basis of relationships observed in historical data, 
especially highly aggregated historical data. More formally, it 
states that the decision rules of Keynesian models—such as 
the consumption function—cannot be considered as 
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structural in the sense of being invariant with respect to 
changes in government policy variables. The Lucas critique 
is significant in the history of economic thought as a 
representative of the paradigm shift that occurred in 
macroeconomic theory in the 1970s towards attempts at 
establishing micro-foundations. 
 
The basic idea pre-dates Lucas's contribution—related ideas 
are expressed as Campbell's law and Goodhart's law—but in 
a 1976 paper, Lucas drove to the point that this simple 
notion invalidated policy advice based on conclusions drawn 
from large-scale macroeconometric models. Because the 
parameters of those models were not structural, i.e. not 
policy-invariant, they would necessarily change whenever 
policy (the rules of the game) was changed. Policy 
conclusions based on those models would therefore 
potentially be misleading. This argument called into question 
the prevailing large-scale econometric models that lacked 
foundations in dynamic economic theory. Lucas summarized 
his critique: 
 
    "Given that the structure of an econometric model consists 
of optimal decision rules of economic agents, and that 
optimal decision rules vary systematically with changes in 
the structure of series relevant to the decision maker, it 
follows that any change in policy will systematically alter the 
structure of econometric models." 
 
The Lucas critique is, in essence, a negative result. It tells 
economists, primarily, how not to do economic analysis. The 
Lucas critique suggests that if we want to predict the effect 
of a policy experiment, we should model the "deep 
parameters" (relating to preferences, technology, and 
resource constraints) that are assumed to govern individual 
behavior: so-called "microfoundations." If these models can 
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account for observed empirical regularities, we can then 
predict what individuals will do, taking into account the 
change in policy, and then aggregate the individual decisions 
to calculate the macroeconomic effects of the policy change. 
 
Shortly after the publication of Lucas's article, Kydland and 
Prescott published the article "Rules rather than Discretion: 
The Inconsistency of Optimal Plans", where they not only 
described general structures where short-term benefits are 
negated in the future through changes in expectations, but 
also how time consistency might overcome such instances. 
That article and subsequent research led to a positive 
research program for how to do dynamic, quantitative 
economics. 
 
The Lucas critique was an important methodological 
innovation. It does not invalidate that fiscal policy may be 
countercyclical, which some associate with John Maynard 
Keynes.” 

 
Here follows an excerpt from the Wikipedia article on “reduced 
form.” 
 

“In statistics, and particularly in econometrics, the reduced 
form of a system of equations is the result of solving the 
system for the endogenous variables. This gives the latter as 
functions of the exogenous variables, if any. In 
econometrics, the equations of a structural form model are 
estimated in their theoretically given form, while an 
alternative approach to estimation is to first solve the 
theoretical equations for the endogenous variables to obtain 
reduced form equations, and then to estimate the reduced 
form equations. 
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Let Y be the vector of the variables to be explained 
(endogenous variables) by a statistical model and X be the 
vector of explanatory (exogeneous) variables. In addition, let 
ε be a vector of error terms. Then the general expression of 
a structural form is f (Y, X, ε) = 0, where f is a function, 
possibly from vectors to vectors in the case of a multiple-
equation model. The reduced form of this model is given by 
Y = g(X , ε) , with g a function.” 

 
The structural form of a model is the form that arises naturally, 
describing the interrelationships among the variables in a system 
of equations.  A linear structural model has the general form 
 
Byt + Γxt = ut 
 
where B and Γ are (n x n) and (n x m) matrices of parameters 
(coefficients), ut is an (n x 1) vector of model error terms, xt is an 
(m x 1) vector of all of the predetermined (exogenous) variables, 
and yt is an (n x 1) vector of all of the endogenous variables.  The 
statement that xt are predetermined is taken to mean that the xt 
are uncorrelated with the model error terms, E(xt ut’) = 0.  
Assuming that B is invertible (positive definite), we may write this 
model in the form 
 
yt = -B-1Γxt + B-1 ut = Π’xt + vt 
 
where Π’ = -B-1Γ and vt = B-1 ut. 
 
This second form of the model, which expresses the endogenous 
variates solely as a function of the exogenous variates, is called 
the reduced form of the model. 
 
The primary advantage of the structural form is that it easier to 
understand the relationships among the model variables.  A 
disadvantage of the structural form of the model is that (if there is 
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more than one endogenous variable) ordinary-least-squares 
estimates of the model parameters are biased. 
 
The standard form of a VAR mode of order p, is 
 
Φ(B)(Zt – μ) = at 
 
where Φ(B) = I – Φ1B – Φ2B2 -…- ΦpBp, Φi is a (k x k) parameter 
matrix, and at is a white-noise sequence with mean 0 and 
covariance matrix Σ.  This model may be written as 
 

(𝒁𝑡 − 𝝁) = ∑ 𝚽𝑗(𝒁𝑡−𝑗 − 𝝁) + 𝒂𝑡

𝑝

𝑗=1
 

 
Since the at are uncorrelated with the Zt-j, this model 
representation is in reduced form.  A VAR is put into structural 
form as follows.  (See p. 520 of Box-Jenkins book for details.) 
 
Since the matrix Σ = E[at at’] is (assumed to be) positive definite 
there exists a lower-triangular matrix Φ0

# with ones on the 
diagonal such that Φ0

#Σ Φ0
#’ = Σ# is a diagonal matrix with positive 

diagonal elements.  Premultiplying the above equation by Φ0
# 

produces 
 

𝚽0
#(𝒁𝑡 − 𝝁) = ∑ 𝚽𝑗

#(𝒁𝑡−𝑗 − 𝝁) + 𝒃𝑡

𝑝

𝑗=1
 

 

where 𝚽𝑗
# =  𝚽0

#𝚽𝑗  and 𝒃𝑡𝚽0
#𝒂𝑡 with 𝑐𝑜𝑣[𝒃𝑡] = 𝚺#. 

 
In many applications, the predetermined variables have 
substantive meaning, such as attributes of a physical entity.  In 
the preceding, the predetermined variables were values of the 
observed variate at times prior to time t.  In some applications, a 
structural variable may not have physical meaning, but may 



71 
 

simply be a geometrical construct, such as a trend observed in a 
time series.  The term “structural model” may refer to models that 
include variables of either kind. 
 
The books Forecasting, structural time series models and the 
Kalman filter by Andrew C. Harvey and Time Series Analysis by 
State Space Methods 2nd ed. By J. Durbin and S. J. Koopman 
discuss structural models in detail.  ARIMA models remove levels 
and trends; the structural variables in those models have 
substantive meaning.  As an example, the “airline ticket sales” 
example may be formulated as a model involving the single 
observed variable, or it may be represented as a structural model 
with an explicit trend and seasonal component.  Both 
representations lead to accurate forecasts.  In some applications, 
it is desired to estimate features of a time series, such as a trend 
or seasonal component.  In those situations, the structural 
approach is preferred. 
 
Econometric Models 
 
Application of statistical methodology in the field of economics is 
referred to as econometrics.  The field of econometrics applies 
the same models discussed here.  In general, however, a 
statistical model in an economics application would involve 
greater consideration of structural models expressed in terms of 
economic variables. 
 
An Internet search using terms such as “econometrics in R” will 
identify R resources relating to econometrics.  Examples include 
Econometrics in R by Grant V. Farnsworth, October 26, 2008 , 
posted at  https://cran.r-project.org/doc/contrib/Farnsworth-
EconometricsInR.pdf ; and Using R to Teach Econometrics by 
Jeff Racine and Rob Hyndman, posted at 
https://robjhyndman.com/papers/R.pdf   Here follows the abstract 
and initial part of the introduction from the latter article: 

https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
https://robjhyndman.com/papers/R.pdf
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“R, an open-source programming environment for data 
analysis and graphics, has in only a decade grown to 
become a de-facto standard for statistical analysis against 
which many popular commercial programs may be 
measured.  The use of R for the teaching of econometric 
methods is appealing.  It provides cutting-edge statistical 
methods which are, by R's open-source nature, available 
immediately.  The software is stable, available at no cost, 
and exists for a number of platforms, including various 
flavors of Unix and Linux, Windows(9x/NT/2000), and the 
MacOS.  Manuals are also available for download at no cost, 
and there is extensive on-line information for the novice 
user. This review focuses on using R for teaching 
econometrics.  Since R is an extremely powerful 
environment, this review should also be of interest to 
researchers. 
 
R: an overview.  There is a wide variety of programs for 
conducting statistical analysis. Many are powerful 
commercial products, such as Gauss, MATLAB, Minitab, 
SAS, Shazam, Stata, SPSS, S-PLUS, and TSP.  
Unfortunately, commercial software can be costly, 
sometimes prohibitively so, can involve relatively long 
development cycles, and rarely features experimental or 
cutting-edge statistical methods.  Fortunately, there now 
exists an open source alternative to commercial statistical 
programs that is available fora variety of computing 
platforms including Windows, MacOS, MacOSX, FreeBSD, 
NetBSD, Linux, IRIX, Solaris, OSF/1, AIX and HPUX.  This 
software has been developed by a core team of leading 
statisticians and programmers.  The software is called `R' 
and is available under the GNU Public License.  To obtain 
the software, simply go to the site http://www.r-project.org 
and follow the download instructions.” 

http://www.r-project.org/
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Microsimulation Models 

 
From the Wikipedia article on microsimulation (or microanalytic 
simulation), posted at Internet website 
https://en.wikipedia.org/wiki/Microsimulation , is the following 
definition: 
 

“The International Microsimulation Association,[1] defines 
microsimulation as a modelling technique that operates at 
the level of individual units such as persons, households, 
vehicles or firms. Within the model each unit is represented 
by a record containing a unique identifier and a set of 
associated attributes – e.g. a list of persons with known age, 
sex, marital and employment status; or a list of vehicles with 
known origins, destinations and operational characteristics. 
A set of rules (transition probabilities) are then applied to 
these units leading to simulated changes in state and 
behaviour. These rules may be deterministic (probability = 
1), such as changes in tax liability resulting from changes in 
tax regulations, or stochastic (probability <=1), such as 
chance of dying, marrying, giving birth or moving within a 
given time period. In either case the result is an estimate of 
the outcomes of applying these rules, possibly over many 
time steps, including both total overall aggregate change and 
(importantly) the way this change is distributed in the 
population or location that is being modeled.” 

 
In this article, we shall restrict attention to econometric 
microsimulation, which is concerned with the behavior or 
individuals or families over time. 
 
In the microsimulation approach to forecasting, a large sample of 
households is taken from a household survey, and used as a 
basis for estimating quantities that are dependent on household 

https://en.wikipedia.org/wiki/Microsimulation
https://en.wikipedia.org/wiki/Microsimulation#cite_note-1
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characteristics, such as welfare caseloads and budgets.  A 
detailed description of the process is presented in Policy 
Exploration through Microanalytic Simulation, by Guy Orcutt, 
Steven Caldwell and Richard Wertheimer II (Urban Institute, 
1976). 
 
The Urban Institute currently maintains a microsimulation model 
called the Transfer Income Model, version 3, TRIM3. 
 
An R package that performs microsimulation is MicSim, described 
in the article, “The MicSim Package of R: An Entry-Level Toolkit 
for Continuous-Time Microsimulation” by Sabine Zinn 
(International Journal Of Microsimulation (2014) 7(3) 3-32 
International Microsimulation Association) posted at Internet 
website 
https://www.microsimulation.org/IJM/V7_3/2_IJM_7_3_Zinn.pdf . 
 

4. Deterministic Models (and Primarily Deterministic Models) 

 

Computable general equilibrium models (CGE models) 

 
The following description of computable general equilibrium 
models is quoted from the Wikipedia article on that topic: 
 

“Computable general equilibrium (CGE) models are a class 
of economic models that use actual economic data to 
estimate how an economy might react to changes in policy, 
technology or other external factors. CGE models are also 
referred to as AGE (applied general equilibrium) models. 
 
Overview 
 
A CGE model consists of equations describing model 
variables and a database (usually very detailed) consistent 

https://www.microsimulation.org/IJM/V7_3/2_IJM_7_3_Zinn.pdf
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with these model equations. The equations tend to be neo-
classical in spirit, often assuming cost-minimizing behaviour 
by producers, average-cost pricing, and household demands 
based on optimizing behaviour. However, most CGE models 
conform only loosely to the theoretical general equilibrium 
paradigm. For example, they may allow for: 
 
    non-market clearing, especially for labour (unemployment) 
or for commodities (inventories) 
    imperfect competition (e.g., monopoly pricing) 
    demands not influenced by price (e.g., government 
demands) 
 
A CGE model database consists of: 
 
    tables of transaction values, showing, for example, the 
value of coal used by the iron industry. Usually the database 
is presented as an input-output table or as a social 
accounting matrix (SAM). In either case, it covers the whole 
economy of a country (or even the whole world), and 
distinguishes a number of sectors, commodities, primary 
factors and perhaps types of household. Sectoral coverage 
ranges from relatively simple representations of capital, labor 
and intermediates to highly-detailed representations of 
specific sub-sectors (e.g., the electricity sector in GTAP-
Power). 
    elasticities: dimensionless parameters that capture 
behavioural response. For example, export demand 
elasticities specify by how much export volumes might fall if 
export prices went up. Other elasticities may belong to the 
constant elasticity of substitution class. Amongst these are 
Armington elasticities, which show whether products of 
different countries are close substitutes, and elasticities 
measuring how easily inputs to production may be 
substituted for one another. Income elasticity of demand 
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shows how household demands respond to income 
changes. 
 
CGE models are descended from the input-output models 
pioneered by Wassily Leontief, but assign a more important 
role to prices. Thus, where Leontief assumed that, say, a 
fixed amount of labour was required to produce a ton of iron, 
a CGE model would normally allow wage levels to 
(negatively) affect labour demands. 
 
CGE models derive too from the models for planning the 
economies of poorer countries constructed (usually by a 
foreign expert) from 1960 onwards .  Compared to the 
Leontief model, development planning models focused more 
on constraints or shortages—of skilled labour, capital, or 
foreign exchange. 
 
CGE modelling of richer economies descends from Leif 
Johansen's 1960 MSG model of Norway, and the static 
model developed by the Cambridge Growth Project in the 
UK. Both models were pragmatic in flavour, and traced 
variables through time. The Australian MONASH model is a 
modern representative of this class. Perhaps the first CGE 
model similar to those of today was that of Taylor and Black 
(1974). 
 
CGE models are useful whenever we wish to estimate the 
effect of changes in one part of the economy upon the rest. 
For example, a tax on flour might affect bread prices, the 
CPI, and hence perhaps wages and employment. They have 
been used widely to analyse trade policy. More recently, 
CGE has been a popular way to estimate the economic 
effects of measures to reduce greenhouse gas emissions. 
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CGE models always contain more variables than 
equations—so some variables must be set outside the 
model. These variables are termed exogenous; the 
remainder, determined by the model, are called 
endogenous. The choice of which variables are to be 
exogenous is called the model closure, and may give rise to 
controversy. For example, some modelers hold employment 
and the trade balance fixed; others allow these to vary. 
Variables defining technology, consumer tastes, and 
government instruments (such as tax rates) are usually 
exogenous. 
 
Today there are many CGE models of different countries. 
One of the most well-known CGE models is global: the 
GTAP model of world trade. 
 
CGE models are useful to model the economies of countries 
for which time series data are scarce or not relevant 
(perhaps because of disturbances such as regime changes). 
Here, strong, reasonable, assumptions embedded in the 
model must replace historical evidence. Thus developing 
economies are often analysed using CGE models, such as 
those based on the IFPRI template model.” 

 
Here follows a query, “[R] Computable General Equilibrium (CGE) 
models in R,” posted on August 11, 2010, at 
https://tolstoy.newcastle.edu.au/R/e11/help/10/08/4395.html , 
asking whether an R package existed to implement computable 
general equilibrium models. 
 

“Has someone implemented a Computable General 
Equilibrium (CGE) model in R? Usually such models are 
coded in GAMS ( a general algebraic solver) or GEMPACK 
(a solver specifically for CGE models). As it is possible to 
implement CGE models in the econometric software EViews 

https://tolstoy.newcastle.edu.au/R/e11/help/10/08/4395.html
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(Essama-Nssah, B. (2004), Building and Running General 
Equilibrium Models in EViews, 
http://ssrn.com/paper=636617), I suspect it can also be done 
in R. I am aware of the BB package for solving a large 
system of nonlinear equations (http://cran.r-
project.org/web/packages/BB/), but what I am looking for is 
examples of CGE models coded in R. -- Luc Hens” 

 
From the lack of response to this query, it appears that the major 
software available for implementing CGEs consists of GAMS, 
GEMPACK and EViews. 
 
A summary of the technical basis for CGE follows. 
 
A general equilibrium model describes a stable state of an 
economy at a high level of aggregation.  The model represents 
the flow of money between sectors of the economy.  In the 
equilibrium state, it is assumed that individuals and firms allocate 
their monetary resources to maximize utility, that the prices of 
goods and services are the same for individuals and firms, and 
that the prices are determined so that all produced goods are 
consumed. 
 
The basic entities of a general equilibrium model are individuals, 
firms, governments, resources, goods and services.  The model 
variables describe these entities, such as amounts of a resource, 
prices, and tax rates.  Model parameters specify characteristics of 
model entities and functional relationships between the model 
entities. 
 
A computable general equilibrium model is one for which data are 
available to enable estimation of quantities of interest, such as the 
new allocation of resources if changes are made to model 
variables or parameters, such as changes in tax rates, constraints 
on imports, or transfer payments. 

http://ssrn.com/paper=636617
http://cran.r-project.org/web/packages/BB/
http://cran.r-project.org/web/packages/BB/


79 
 

 
A major component of a CGE is a social accounting matrix (SAM), 
that specifies the transfers of money between model entities 
(individuals, firms, governments in an economy) in a particular 
year or years.  We shall restrict attention to static CGEs, in which 
attention is restricted to a single “base” year, not to dynamic 
CGEs that include data for several years.  Social accounting 
matrices are available for many countries for several base years. 
 
A social accounting matrix is similar to an input-output table.  The 
input-output table is limited to a description of the production and 
consumption in the producing sectors of an economy.  A SAM 
includes other economic aspects, such as the government sector, 
taxes, savings and investment. 
 
A CGE involves a large amount of data about the economy and 
about the response of individuals and firms to changes in 
variables such as prices and resource availability.  The responses 
to changes are described by elasticities (the ratio of a percentage 
change in one variable to the percentage change in another 
variable).  A major problem facing implementation of CGEs is the 
limited availability of data describing consumer preferences and 
elasticities.  A standard approach to estimating the parameters of 
utility functions and production functions is to assume parametric 
functional forms for them and “calibrate” values for the 
parameters that are consistent with the SAM data. 
 
A major decision about a CGE application is whether the 
equations defining the model are defined in terms of nonlinear 
equations involving levels of variables or linear equations 
involving percentages of variables.  If defined in terms of levels 
and nonlinear equations, it is necessary to estimate the 
parameters of those equations from the base-year data 
(“calibration”). 
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Some applications of CGEs have involved the use of econometric 
models to estimate model parameters, but this activity has been 
limited. 
 
Although CGEs are used to make forecasts about the effects of 
changes in policy variables, the justification for this is somewhat 
tenuous.  CGE models involve many parameters, and there is 
often little justification for the assumed values of the parameters.  
A legitimate use of CGEs is to conduct sensitivity analysis to 
estimate the sensitivity of output variables of interest to changes 
of input variables of interest, conditional on the model 
specification.  This is similar to making deterministic population 
projections based on assumptions about birth, death and 
migration rates, without making probability statements about the 
projections. 
 
Detailed descriptions of CGE are presented in the following 
references: 
 

Burfisher, Mary E., Introduction to Computable General 
Equilibrium Models, 2nd ed., Cambridge University Press, 
2016 
 
Hosoe, Nobuhiro, Kenji Gasawa and Hideo Hashimoto, 
Textbook of Computable General Equilibrium Modeling, 
Programming and Simulations, Palgrave Macmillan / St. 
Martin’s Press, 2010 

 
The first reference focuses on the use of linear models (such as 
GEMPACK and GTAP), and the second on the use of nonlinear 
models (solvable with GAMS). 
 
There is much reference material about CGEs on the Internet, 
including introductory material and detailed examples.  The key 
data requirements for a CGE are a social accounting matrix and 
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elasticities (which describe the behavioral response to changes in 
prices or resource amounts).  Constructing estimates of these 
quantities involves a substantial amount of effort.  An Internet 
search reveals a number of articles describing procedures for 
constructing a SAM. 
 
The decision to use a CGE as the basis for estimation of the 
impact of a policy change would not rest on a single application, 
but on a decision to establish an institutional capacity to perform 
CGE analyses for many applications in the future.  Whereas the 
time-series approach to forecasting can be implemented quickly, 
that is not true of CGE estimation. 
 
While the time-series models discussed earlier could be 
described as a “statistical” approach to forecasting, and the CGE 
approach described as an “optimization” approach, that 
characterization is somewhat misleading, since estimation 
methods based on time-series estimation approaches usually 
involve optimization (e.g., minimization of an error sum of 
squares, or maximization of a likelihood function).  On the other 
hand, referring to a CGE as a “deterministic” approach is also a 
little misleading, since estimation of the model parameters (SAM 
entries, elasticities, utility and production function parameters) 
could involve statistical analysis. 
 

Population-based (demographic, regional, small-area-estimation) 

models 

 
A powerful method for forecasting phenomena that are closely 
related to population is to use a cohort-component population 
projection model to project population into the future, and then 
use a model-based-estimation approach (such as synthetic 
estimation or small-area estimation) to construct forecasts. 
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This topic could have been included in the “Stochastic Models” 
section, since it involves statistical techniques and estimates.  
Since the errors in judgment about the population projections are 
often substantially greater than errors associated with estimation 
conditional on the population projections, it is categorized under 
deterministic rather than stochastic models. 
 
An Internet search of terms such as “R for demography,” “R for 
small-area estimation,” “R for model-based estimation,” “R for 
synthetic estimation.” “R for population projections,” “R for 
population forecasting,” “R for demographic forecasting” and the 
like will show that R packages are available to perform model-
based estimation.  Examples of packages are “sae: An R 
Package for Small Area Estimation” by Isabel Molina and Yolanda 
Marhuenda posted at https://journal.r-project.org/archive/2015/RJ-
2015-007/RJ-2015-007.pdf  and “The R Package emdi for 
Estimating and Mapping Regionally Disaggregated Indicators” by 
Ann-Kristin Kreutzmann, Sören Pannier, Natalia Rojas-Perilla, 
Timo Schmid, Matthias Templ and Nikos Tzavidis posted at 
https://cran.r-
project.org/web/packages/emdi/vignettes/vignette_emdi.pdf . 
 
The two principal sources of R programs for demographic 
forecasting are Prof. Rob Hyndman’s R package, “Package 
‘demography’,” April 22, 2019, posted at https://cran.r-
project.org/web/packages/demography/demography.pdf  and the 
software package, “YourCast: Time Series Cross-Sectional 
Forecasting with Your Assumptions,” by Profs. Federico Girosi 
and Gary King, posted at https://gking.harvard.edu/yourcast 
(formerly an R package).  YourCast implements the methods for 
demographic forecasting discussed in Demographic Forecasting 
by Federico Girosi and Gary King, Princeton University Press, 
2008.  It is posted at http://gking.harvard.edu/files/abs/smooth-
abs.shtml .  The author notes, “Please read at least Chapter 1 of 
the book before attempting to use YourCast.” 

https://journal.r-project.org/archive/2015/RJ-2015-007/RJ-2015-007.pdf
https://journal.r-project.org/archive/2015/RJ-2015-007/RJ-2015-007.pdf
https://cran.r-project.org/web/packages/emdi/vignettes/vignette_emdi.pdf
https://cran.r-project.org/web/packages/emdi/vignettes/vignette_emdi.pdf
https://cran.r-project.org/web/packages/demography/demography.pdf
https://cran.r-project.org/web/packages/demography/demography.pdf
https://gking.harvard.edu/yourcast
http://gking.harvard.edu/files/abs/smooth-abs.shtml
http://gking.harvard.edu/files/abs/smooth-abs.shtml
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Demographic constructs such as mortality tables involve many 
correlated variables.  The standard way of forecasting them is to 
apply the method of principal components (i.e., form a singular 
value decomposition of a matrix, forecast the eigenvalues (as a 
multivariate vector) using an ARIMA-type model (e.g., a VAR), 
and construct a forecasted matrix from the forecasted 
eigenvector.  The method forecasting mortality using principal 
components is called the Lee-Carter model, after the men who 
popularized the use of the method in demographic forecasting. 
 
A program for making synthetic-estimate forecasts based on 
population projections is the DESTINY software program 
package, developed by the author (see citation in References for 
access to source code). 
 
There are two approaches to estimation of populations 
disaggregated by race or region.  One is to construct 
demographic tables by those variables, and the other is to use the 
methodology of small-area estimation, such as synthetic 
estimation or other indirect-estimation technique.   See the book, 
Small Area Estimation by J. N. K. Rao for detailed information on 
small-area estimation. 
 

Cost-Benefit Models 

 
An Internet search of “R for cost-benefit analysis” or “R for cost-
benefit models” finds R software for cost-effectiveness analysis, 
but not for cost-benefit analysis.  While this methodology is useful 
for predicting the effects of program and policy changes, it is 
evidently not sufficiently well-structured to warrant the 
development of special-purpose software to assist the analysis. 
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Anticipation Surveys 

 
No R software was identified for specifically assisting the conduct 
of anticipation surveys.  Considerable R software is available for 
analysis of sample survey data.  A source that identifies some 
resources in this area is “Survey analysis in R” posted at http://r-
survey.r-forge.r-project.org/survey/ . 
 
This topic could have been included in the “Stochastic Models” 
section, but for the fact that anticipation surveys are often ad-hoc, 
based on “judgment samples,” rather than designed sample 
surveys. 
 

Content Analysis 

 
Some R software is available for assisting content analysis.  
Discussion of this topic is presented in the article “Text Analysis in 
R” by Kasper Welbers, Wouter van Atteveldt and Kenneth Benoit 
(Communication Methods And Measures 2017, Vol. 11, No. 4, 
245–265 https://doi.org/10.1080/19312458.2017.1387238 ) 
posted at https://kenbenoit.net/pdfs/text_analysis_in_R.pdf . 
 
See also ReadMe: Software for Automated Content Analysis on 
Gary King’s website, https://gking.harvard.edu/readme . 
 

Appendix A.  Additional Discussion of the Univariate Univariable 

ARIMA Model 

 
Additional discussion 
 
For an ARIMA model, the forecasts may be computed directly 
from the model equation. 
 
Let us denote the general autoregressive polynomial 

http://r-survey.r-forge.r-project.org/survey/
http://r-survey.r-forge.r-project.org/survey/
https://doi.org/10.1080/19312458.2017.1387238
https://kenbenoit.net/pdfs/text_analysis_in_R.pdf
https://gking.harvard.edu/readme
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Φ(B)(1-B)d 
 
as 
 
Φ(B)(1-B)d = ϕ(B) = (1 – ϕ1B - … - ϕp+dBp+d). 
 
In what follows, for simplicity, we shall drop the mean term φ0. 
 
Then the model may be written as 
 
ϕ(B)zt = Θ(B)at 
 
or 
 
zt = ϕ1zt-1 + … + ϕp+dBp+dzt-p-d + at – θ1at-1 - … - θqat-q 
 
The forecast is calculated directly from this formula, substituting 
known or forecasted values for the z’s, and estimated values or 
zeros for the a’s.  The value zero is used for future a’s.  Past a’s 
are estimated from the equation 
 
at = zt -zt

f, 
 
where zt

f is the forecasted value of zt from the time t-1. 
 
The at’s are the one-step-ahead forecast errors.  For models 
involving moving-average parameters (θs), in order to estimate 
the forecast from time t using the model formula, it is necessary to 
begin forecasting a few steps before the end of the series, so that 
estimates of the at’s will be available for the forecast from time t. 
 
For example, for the model constructed above, 
 
zt = zt-1 + at - .05336 at-1, 
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the forecast of the last observation in the time series, from the 
next-to-last time t = 239 is 
 
z240 = z239 -.05336 a239, 
 
where z240 = 1.12388, z239 = 1.12386 and a239 is estimated as 
its expected value, zero (since we have not estimated it from 
earlier forecasts). 
 
This yields the forecast 
 
z240estfrom239 = 1.12386 -.05336 (0) = 1.12386. 
 
and the estimated value of a240 as 
 
a240est = z240true – z240estfrom239 = 1.12388 – 1.12386 = .00002. 
 
Using this estimated value of a240, we calculate the one-step-
ahead forecast from time t = 240 as 
 
z241estfrom240 = z240 -.05334 a240est = 1.12388 - .05334(.00002) = 
1.123879. 
 
This value is in agreement with the program output. 
 
Formulas for the Forecast Function and Forecast Error Variance 
 
The following results show why the forecast may be calculated 
from the model equation, and derives a formula for the error 
variance of the forecasts.  These results are from pp. 126-129 of 
the first edition of the Box-Jenkins book. 
 
The standard (canonical) form of an ARIMA model is 
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ϕ(B)zt = Θ(B)at 
 
where 
 
ϕ(B) = Θ(B)(1 – B)d, 
 
where Φ(B) and Θ(B) are polynomial of finite degrees p and q, 
respectively. 
 
If the roots of the Φ polynomial lie outside the unit circle, and if 
d=0, then the process is stationary, and may be written in the 
form 
 
zt = ϕ-1(B)Θ(B) at = Ψ(B) at 
 
where 
 
Ψ(B) = (1 – ψ1B – ψ2B2 - …). 
 
The function is called the transfer function or impulse response 
function of the model, and the coefficients ψ1, ψ2, are called 
impulse responses. 
 
The polynomial ϕ-1(B) is the operator inverse of the polynomial 
ϕ(B).  For example, if 
 
ϕ(B) = 1 – ϕ1B 
 
where ϕ1 is less than one in magnitude, then 
 
ϕ-1(B) = 1 + ϕ1B + ϕ1

2B2 +…. 
 
If the roots of the Θ polynomial lie outside the unit circle, then the 
process is invertible, and may be written in the form 
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at = Θ-1(B)ϕ(B) zt = Π(B) zt 
 
where 
 
Π(B) = 1 – π1B – π2B2 -…. 
 
The polynomials Ψ and Π satisfy 
 
Ψ(B) = Π-1(B). 
 
Since 
 
Ψ(B) = ϕ-1(B)Θ(B), 
 
It follows that 
 
ϕ(B)Ψ(B) = Θ(B), 
 
and the values of the ψs may be determined by equating the 
coefficients on powers of B on opposite sides of the preceding 
equation. 
 
Since 
 
Π(B) = Θ-1(B)ϕ(B), 
 
It follows that 
 
Θ(B)Π(B) = ϕ(B), 
 
and the values of the πs may be determined by equating the 
coefficients on powers of B on opposite sides of the preceding 
equation. 
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Hence we see that, if a model is stationary and invertible, then it 
may be represented in three alternative forms.  The standard 
(canonical) form is the most efficient representation, since it is 
specified by a small number of parameters (p + q of them).  It is a 
useful form for determining the forecast function.  The transfer-
function form of the model, 
 
zt = ϕ-1(B)Θ(B) at = Ψ(B) at 
 
is useful in determining a formula for the variance of the forecast 
errors. 
 
If a model has roots on the unit circle, then the operator Ψ(B) 
cannot be inverted, and the alternative model representation zt = 
Ψ(B) at does not exist.  Nevertheless, the formulas for the ψs 
obtained by setting coefficients equal may still be used to obtain a 
formula for the variance of the forecast errors. 
 
With these preliminary results, we shall now proceed to derive 
formulas for the forecast function and the variance of the forecast 
error variance.  We shall present results for the case in which d = 
0 and the roots of the φ and Θ polynomials lie outside the unit 
circle.  In this case, the process is invertible and stationary.  (The 
formula for the forecast error variance still holds for the case d = 
0, but they are not proved here.) 
 
Since the process is stationary, the φ(B) operator is invertible, 
and the process may be represented as 
 
zt = φ-1(B) at. 
 
We shall write this representation as 
 
zt = Ψ(B) at. 
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Suppose that we are interested in forecasting the value of zt r 
periods ahead of current time t (observations are available for zt, 
zt-1,….).  This value is 
 

𝑧𝑡+𝑟 = Ψ(𝐵)𝑎𝑡+𝑟 = ∑ 𝜓𝑗𝑎𝑡+𝑟−𝑗

∞

𝑗=0
 

 
where the value of ψ1 is 1.  (The function Ψ(B) is called the 
transfer function, and the values ψ1, ψ2,… are called impulse 
responses.)  The values of the ψ’s may be obtained by equating 
coefficients in the equation 
 

𝜑(𝐵)(1 + 𝜓1 + ⋯ ) = 𝜃(𝐵). 
 
Suppose that it is desired to estimate the value of zt+r from current 
time t, as a linear function of the available observations, zt, zt-1,….  
Denote this estimate, or forecast, as 𝑧̂𝑡(𝑟).  Since the z’s are 
linear functions of the a’s, the forecast may be written as a linear 
function of the a’s. 
 
Write this forecast as 
 

𝑧̂𝑡(𝑟) = 𝜓1
∗𝑎1 + 𝜓2

∗𝑎2 + ⋯, 
 
where the coefficients ψi* are to be determined to minimize the 
mean squared error of prediction, 
 

𝐸[𝑧_(𝑡 + 𝑟) − 𝑧 ̂_𝑡 (𝑟)]2

= (1 + 𝜓1
2 + ⋯ + 𝜓𝑟−1

2 )𝜎𝑎
2 + ∑ {𝜓𝑟+𝑗 − 𝜓𝑟+𝑗

∗ }2𝜎𝑎
2

∞

𝑗=0
. 

 
The minimizing values are = 𝜓𝑟+𝑗

∗ = 𝜓𝑟+𝑗.  It follows that 

 



91 
 

𝑧𝑡+𝑟 = (𝑎𝑡+𝑟 + 𝜓1𝑎𝑡+𝑟−1 + ⋯ + 𝜓𝑟−1𝑎𝑡+1)
+ (𝜓𝑟𝑎𝑡 + 𝜓𝑟+1𝑎𝑡−1 + ⋯ ) = 𝑒𝑡(𝑟) + 𝑧̂𝑡(𝑟) 

 
where 𝑒𝑡(𝑟) denotes the error of the forecast 𝑧̂𝑡(𝑟) at lead time r. 
 
The conditional expectation of zt+r given the z’s up to time t is 
 

𝐸(𝑧𝑡+𝑟|𝑧𝑡 , 𝑧𝑡−1, … ) = 𝐸(𝑧𝑡+𝑟|𝑎𝑡 , 𝑎𝑡−1, … ) = 𝜓𝑟𝑎𝑡 + 𝜓𝑟+1𝑎𝑡−1 + ⋯
= 𝑧̂𝑡(𝑟). 

 
Considered as a function of r for fixed t, the function 𝑧̂𝑡(𝑟) is called 
the forecast function for origin t. 
 
The mean and variance of the forecast error for lead time r are 
 

𝐸[𝑒𝑡(𝑟)] = 0 
And 
 

𝑣𝑎𝑟[𝑒𝑡(𝑟)] = (1 + 𝜓1
2 + 𝜓2

2 + ⋯ + 𝜓𝑟−1
2 )𝜎𝑎

2. 
 
The one-step-ahead forecast errors are 
 

𝑒𝑡(1) = 𝑧𝑡+1 − 𝑧̂𝑡(1) = 𝑎𝑡+1. 
 
As discussed earlier, to determine the variance for the particular 
model 
 
ϕ(B) zt = θ(B) at 
 
we must determine the values of the ψ’s by equating coefficients 
on both sides of the equation 
 

𝜑(𝐵)(1 + 𝜓1 + ⋯ ) = 𝜃(𝐵). 
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For the model 
 
(1 – ϕB) zt = (1 – θB) at 
 
we have 
 
(1 – ϕB)(1 + ψ1B + …) = (1 – θB). 
 
Setting the coefficients of the powers of B on the two sides of the 
equation equal, we obtain 
 
–ϕ + ψ1 = -θ 
 
ϕ ψ1 – ψ2 = 0 
 
ϕ ψ2 – ψ3 = 0 
 
… 
 
or 
 
ψ1 = ϕ – θ 
 
ψ2 = ϕ(ϕ – θ) 
 
ψ3 = ϕ2(ϕ – θ) 
…. 
 
For the model estimated for the EUR/USD one-minute data, ϕ = 1 
and θ = .0534.  Hence 
 
ψ1 = ϕ – θ = 1 - .0534 = .9466 
 
ψ2 = ϕ(ϕ – θ) = .9466 
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ψ3 = ϕ2(ϕ – θ) = .9466 
 
…. 
 
Hence the variance of the error in the r-ahead forecast is 
 
V(r) = (1 + (r-1).94662)σa

2. 
 
For values of r from 1 to 4, the values of the coefficient of σa

2 are 
1, 1.8961, 2.794, and 3.690. 
 
Since σa

2 is estimated as 8.439229e-09, σa is estimated as the 
square root .00009186528.  The square roots of the variance 
coefficients are 1, 1.377, 1.671, and 1.920.  Multiplying these 
factors by .000091865 yields the following standard errors for the 
forecasts from lead times 1 through 4: .000091865, .0001265, 
.0001535, and .0001764. 
 
This matches the program output. 
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