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I. INTRODUCTION AND SUMMARY 
 

 

A. _Study Purpose_ 

 

This report describes the results of a study to examine the feasibility of 

developing fast algorithms for estimation, prediction and control.  The 

objective of the study was to assess the likelihood of finding procedures which 

could be faster, in terms of computer running time, than the classical least-

squares method of parameter estimation, used extensively to develop models of 

stochastic phenomena.  While the least-squares method has proved its worth in 

over a century of use, it has some serious drawbacks, stemming from the fact 

that it requires the inversion of matrices.  For "large" problems such as the 

problem of tracking many missiles or processing data from multiple intelligence 

sensors in real-time, the computational burden of the least-squares method can 

overwhelm even today's powerful computing systems.  Previous attempts to solve 

this problem have centered on the development of faster computers (e.g., array 

processors), the improvement of algorithms for matrix inversion, or the 

simplification of the model to produce a matrix that is easier to invert.  In 

general, these approaches have not been successful in solving the problem.  

Modern sensor exploitation systems, for example, still cannot operate in real-

time or even near-real-time. 

 

The present study proposed to adopt a totally different approach to the problem.  

In particular, it was proposed to investigate methods which would avoid the 

computationally-intensive process of matrix inversion.  Avoiding this procedure 

could reap tremendous benefits.  For example, the problem of tracking a missile 

can involve the inversion of a nine-dimensional matrix at each instant that a 

radar pulse is received, if a nine-component state vector is used to represent 

missile position, velocity, and acceleration. 

 

This project was supported as a Phase I project of the Small Business Innovation 

Research (SBIR) program.  The objective of a Phase I SBIR project is to assess 

the feasibility of a proposed concept and to develop a plan for developing the 

concept.  If, based on the Phase I effort, the proposed concept appears to have 

merit, then development of the concept may be funded under Phase II of the SBIR 

program. 

 

B. _Study Results_ 

 

This Phase I project has successfully accomplished all of the tasks identified 

in the proposal, and established the feasibility of the proposed concept.  Seven 

tasks were proposed to be accomplished in this study: 

 

     Task 1. Development of Criteria for Comparing  

             Alternative Estimation Schemes 

 

     Task 2. Development of Test Cases 

 

     Task 3. Implementation of the Single-Variable Linear- 

             Model Case 

 

     Task 4. Extension to the Multiple-Variable Linear- 

             Model Case 
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     Task 5. Comparison of Methods 

 

     Task 6. Design of Phase II Work Plan 

 

     Task 7. Preparation of Final Report 

 

The results of each of the seven study tasks are summarized in the paragraphs 

that follow. 

 

_Task 1. Development of Criteria for Comparing Alternative Estimation Schemes_ 

 

A total of seven criteria were identified and retained as useful for describing 

the performance of alternative estimation algorithms.  These criteria address 

the following performance aspects: 

 

     o computational speed 

 

     o computer storage requirements 

 

     o precision of the model parameter estimates 

 

     o bias of the model parameter estimates 

 

     o accuracy of the model parameter estimates 

 

     o precision of model-based predictions 

 

     o numerical stability of the algorithm 

 

"Computational speed" refers to the time required to analyze the data and 

produce estimates of the model being used to describe the data.  "Computer 

storage requirements" refers to the total amount of direct-access memory 

("core") required to implement the algorithm.  "Estimate precision" refers to 

the amount of variability of the estimates in repeated data samples.  "Estimate 

bias" refers to the difference between the expected (average) value of the 

parameter estimates in repeated data samples and the true values of the 

parameters.  "Estimate accuracy" is a combined measure of precision and bias.  

"Prediction precision" refers to the closeness of the model-based predictions to 

actual future values.  "Numerical stability" refers to the ability of an 

algorithm to converge to a desired answer. 

 

Specific measures were determined for each of the preceding concepts.  Because 

of project resource limitations, however, it was not possible to develop 

computer software to determine numerical values for all of the measures. 

 

_Task 2. Development of Test Cases_ 

 

It was decided to test the performance of alternative algorithms on sixteen data 

sets.  All of these data sets involve a single dependent variable ("y") and a 

number (m) of independent variables ("x's").  In each case the model used to 

generate the data is of the form: 

 

 

     yj = bo +  bi xij + ej 

 

 

        = bo + _x_j'_b_ + ej 
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This model, called a linear statistical model, specifies the relationship of the 

dependent variable y to m independent, or explanatory, variables 

(x1j,x2j,...,xmj).  The variables bo and b1,b2,...bm are constants, called 

regression coefficients.  They are specified when generating the test data, and 

are to be estimated by the estimation algorithm.  The ej are called model error 

terms, or model residuals.  They are a sequence of uncorrelated random variables 

with mean zero and standard deviation SIG.  The m x's are also random variables 

with zero mean and variance matrix  *SIGMA2 (where the asterisk denotes 

multiplication).  The test cases vary in the ratio of SIG to SIGMA (models for 

which the ratio SIG/SIGMA is low are easier to estimate), and the strength of 

the correlations among the x's (if the x's are uncorrelated, i.e.,   is the 

identity matrix, the estimation is easy; if the x's are highly correlated, the 

estimation is difficult).  The values of SIG, SIGMA,   , bo, and _b_ are 

collectively referred to as the "model parameters." 

 

The test cases considered were as follows: 

 

     Test Cases 1-4: m=1 x, value of SIG/SIGMA varies 

         from low to high 

 

     Test Cases 5-8: m=3 x's, correlation of x's varies 

         from none to high 

 

     Test Cases 9-12: m=6 x's, correlation of x's from 

          none to high 

 

     Test Cases 13-16: m=10 x's, correlation of x's from 

          none to high 

 

The number (m) of independent variables (x's) represents the "dimensionality" of 

the estimation problem.  In the classical least-squares approach, it is 

necessary to invert a matrix of order m in order to estimate the model 

parameters. 

 

In social science applications, the dimensionality of a linear regression model 

can be quite high, e.g., m = 25 to 50 (e.g., there can be a model coefficient 

corresponding to every possible response to a socioeconomic or demographic 

question included in a survey questionnaire).  In industrial and scientific 

applications, the number of explanatory variables may vary from small to large, 

but the researcher is often able to specify the values of the independent 

variables, so that even if there are many of them, special procedures (e.g., 

fractional factorial experimental designs) can be used to avoid the explicit 

inversion of a matrix.  In military applications, the value of m is often 

moderate or small.  For example, in the application of tracking a missile, the 

position, velocity, and acceleration of the missile can be specified by a nine-

component state vector, and the estimation of the parameters of the statistical 

model (called a Kalman filter) requires inversion of a nine by nine matrix.  The 

test cases specified above include the usual dimensionality range of interest 

for many military applications.  For all test cases, the number of observations 

generated (i.e., the sample size) was n = 100.  Later study should examine the 

effect of varying sample size; with the resources available to this project, it 

was not possible to examine a very large number of test cases, and the decision 

was made to hold sample size constant for all test cases. 
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A computer program, called SIMULA, was written to implement the generation of 

the test case data.  A source code listing of that program is presented in 

Appendix A. 

 

_Task 3. Implementation of the Single-Variable Linear-Model Case_ 

 

In the 1940's and 1950's, some work was done in investigating model estimation 

procedures that were alternatives to the classical least-squares procedure.  Two 

of these procedures are referred to as the "Wald" method and the "Bartlett" 

method.  They were designed for application to the case in which there was a 

single explanatory variable (i.e., m = 1).  A computer program was written in 

this project to implement both of these procedures. 

 

As one of the first steps in this study, it was proposed to compare the 

performance of the Wald and Bartlett estimation procedures to the performance of 

the classical least squares method, in order to illustrate the utility of the 

criteria and associated performance measures proposed to compare alternative 

estimation procedures. 

 

This comparison demonstrated that several of the suggested criteria could be 

applied to measure algorithm performance.  For the single-explanatory-variable 

example, however, the comparison is not very revealing.  The estimation of 

parameters for single-explanatory-variable (m = 1) models is very easy and fast 

with any of the methods, so that there is almost no variation in the performance 

measures. 

 

It was not possible to implement all of the performance measures in this 

project, because of resource limitations.  For example, one problem that arose 

was that, for the microcomputer software used in this study, the system timer 

could not be accessed by the FORTRAN compiler.  It was decided not to allocate 

project resources to the development of an assembly-language timer that could be 

linked to the FORTRAN-compiled object modules.  Instead, timing measurements 

were made externally (manually, by direct visual observation), and they are 

hence approximate.  For other performance measures (e.g., the parameter accuracy 

measures), it would have been necessary to replicate a large number of sample 

cases to determine numerical estimates of these measures.  Once again, project 

resources were not sufficiently ample to accomplish this.  Although it was not 

possible to implement all of the suggested performance measures in this Phase I 

effort, it is quite feasible to do so with some additional resources, and this 

should be done as part of Phase II, if Phase II is funded. 

 

_Task 4. Extension to the Multiple-Variable Linear-Model_ 

 

Task 4 was the central task of the proposed study.  The objective of this task 

was to determine fast algorithms for estimating parameters of models containing 

more than one explanatory variable.  In this project, we sythesized and analyzed 

a number of algorithms that represent extensions of the Wald-Bartlett methods.  

They are iterative methods, and will be referred to as "iterative Wald-Bartlett" 

methods.  Several variations of this method were considered, and the one that 

worked best was selected for detailed examination.  This method is described in 

detail in this report, and all of the performance assessments that are presented 

in this report are for this method. 

 

The thrust of this project was to compare the performance of new estimation 

techniques to the performance of the classical least-squares technique.  In 

order to do this, a computer program was required that could perform the 

classical least-squares computations.  We implemented the least-squares 
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estimation procedure by using the Gauss-Jordan method of solving the normal 

equations (i.e., inverting the correlation matrix).  This procedure is described 

in Chapter 3 of Cooley and Lohnes, _Multivariate Procedures for the Behavioral 

Sciences_ (Reference 8), and is the basis for the least-squares estimation 

procedure presented in the IBM Scientific Subroutine Package (Reference 9).  The 

least-squares algorithm used in this project was based on subroutines available 

from the IBM Scientific Subroutine Package, adapted to the Microsoft (R) FORTRAN 

compiler that was available to the microcomputer used in this project.  Thorough 

documentation of the subroutines, including commented code, is included in 

Reference 9.  A source code listing of the algorithm used in this project is 

presented in Appendix A.  The listing in Appendix A does not include any 

comments in the subroutines, in order to avoid possible copyright infringement. 

 

The computer program source code for the iterative Wald-Bartlett method and the 

classical least-squares method is also presented in Appendix A.  These programs 

are written in FORTRAN II, an early, unstructured version of FORTRAN.  That 

version was used since it was the version implemented by the Microsoft FORTRAN 

compiler used on this project. 

 

_Task 5. Comparison of Methods_ 

 

Task 5 was concerned with comparison of the performance of the iterative Wald-

Bartlett method and the classical least-squares method, applied to estimate the 

parameters of the sixteen test cases developed in Task 2.  The results were very 

interesting. 

 

First, the performance of both the iterative Wald-Bartlett and the classical 

least-squares method depends on the nature of the problem.  For "easy" problems, 

in which there are few x's or they are uncorrelated, both methods work well.  

Second, in problems of low to moderate difficulty, there does not appear to be 

an appreciable speed difference between the classical least-squares algorithm 

and the alternative algorithm synthesized in this study. 

 

Third, both the classical least-squares and the iterative Wald-Bartlett methods 

have difficulties with very difficult problems (m large and the x's highly 

correlated).  The really significant result that was observed in this case was 

that, whereas the classical method may fail catastrophically, producing totally-

absurd results, the iterative Wald-Bartlett method is not particularly fast, but 

it determines an estimated model that produces reasonably close predictions.  

(Note: The original number of test cases planned to be examined was 12.  It was 

after observing this result that we added four more test cases, representing 

singular covariance matrices, to examine this phenomenon in greater detail.) 

 

The implications of this result are very significant, and probably outweighs the 

importance of speed in most applications, particularly since the processing 

speed differences between the iterative Wald-Bartlett and the classical least 

squares algorithm are not great.  For example, in an embedded-computer 

application (e.g., a tracker on an unmanned missile) it may be very desirable to 

have a "robust" estimation or prediction procedure -- one that does not fail 

catastrophically.  Moreover, the problem causing the catastrophic failure of the 

least-squares method (the failure of the algorithm to be able to invert a 

"nearly-singular" matrix) is one that has plagued data analysts for years  -- 

ever since the widespread use of digital computers to implement the least-

squares methodology.  Matrix inversion problems in statistical analysis were not 

severe or widespread prior to the 1960's, when most computations were done using 

mechanical calculators.  Most statistical calculations were done by masters-

level mathematicians, and the problems were kept small or designed to avoid the 
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inversion of large matrices.  Starting in the 1960's, however, computer packages 

and computing resources were widely available, and were being applied in many 

cases by researchers who had little or no appreciation of the matrix-inversion 

problem inherent in the least-squares method.  With the large number of non-

statisticians using statistical linear-model packages (e.g., multiple regression 

packages) and the low precision of many microcomputers, this problem arises 

frequently.  Consulting statisticians are often called in on regression analysis 

investigations when regression analysis packages produce meaningless results due 

to a matrix-inversion problem caused by a near-singularity in a correlation 

matrix or a linear dependency in the x's.  With the growing number of 

microcomputers, and the increasing number of non-statisticians using regression 

analysis programs (and the many other statistical procedures that require matrix 

inversion), there is a need for statistical estimation procedures that do not 

fail when near-singularities or linear dependencies are present in the data.  

The demand for "robust" statistical estimators probably represents a far greater 

commercial value than the demand for high-speed algorithms, since the demand for 

real-time processing represents only a small portion of the total demand for 

statistical estimation.  This aspect should be explored further in Phase II. 

 

In general, Task 5 succeeded in demonstrating the feasibility of the proposed 

approach.  Although the iterative Wald-Bartlett method does not appear to be 

substantially faster than the classical least-squares method, it appears to be 

much more "robust" than the classical least-squares method.  Also, since the 

iterative Wald-Bartlett method is based on "order statistics," it would be much 

less sensitive to data errors, such as "outliers," than the classical method.  

The results of the Phase I study suggest that additional exploration of this 

area would be very beneficial. 

 

_Task 6. Design of Phase II Work Plan_ 

 

The results of this Phase I study have demonstrated the feasibility of 

determining fast, robust estimators.  This study centered on the synthesis of a 

particular class of estimator, however, and that estimator certainly does not 

represent a final solution to the general problem.  Although the iterative 

method considered in this study does not fail catastrophically in difficult or 

ill-conditioned problems, as does the classical least-squares method, it is not 

very fast in such cases.  The present feasibility study has revealed the promise 

of the proposed approach, but substantial development effort is necessary to 

produce an estimation method that works well (i.e., is both fast and robust) in 

all cases.  We believe that the resources available in Phase II can accomplish 

that development effort, and have outlined a research plan for implementing the 

effort. 

 

It is proposed that the Phase II effort be redirected from the goal originally 

proposed for Phase I.  The Phase I research was directed solely to the problem 

of finding fast algorithms.  Based on the Phase I results, however, it appears 

that there may be more potential (both in terms of project success and 

commercial value) in attempting the development of robust algorithms.  The 

serendipitous discovery that the synthesized iterative method could produce 

solutions to problems for which the classical least-squares method failed 

catastrophically probably outweighs the promise of a fast algorithm, in terms of 

both military and commercial/industrial significance.  Embedded processors in 

military weapon systems require software that is robust, i.e., does not fail 

catastrophically under certain circumstances.  The current effort has 

demonstrated that it is indeed possible to develop such estimators.  The growing 

use of microcomputers in commercial and industrial applications will create a 

growing demand for estimation procedures that do not fail in ill-conditioned 
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problems, and do not require the participation of a professional statistician to 

assure their convergence to a correct solution.  These applications include not 

only multiple linear regression models of the sort addressed in this study, but 

the whole range of modern-day data analysis procedures (multivariate analysis of 

variance, factor analysis, canonical correlation analysis, discriminant 

analysis, and time series analysis models), since all of these methods involve 

matrix inversion, which is the source of the slowness and potential for 

catastrophic failure of these methods.  The availability of robust algorithms 

would be particularly beneficial in time series applications (e.g., "Box-

Jenkins" analysis), where iterative estimation methods are often employed, and 

convergence problems are encountered by non-statistician users. 

 

It is proposed that Phase II be a two-year effort, staffed at approximately 2-5 

persons per year.  A description of the proposed tasks to be addressed in the 

Phase II effort is included in this report. 

 

_Task 7. Preparation of Final Report_ 

 

This document describes the activities, results, and conclusions of the Phase I 

study.  In addition, it identifies the effort that should be implemented in 

Phase II, in order to complete the development of fast, robust algorithms for 

estimation, prediction, and control. 

 

This Phase I study has accomplished each of the seven tasks identified and 

described in the proposal, in the proposed six-month time frame.  We believe 

that our success in accomplishing all of the proposed tasks, on schedule, augurs 

well for the accomplishment of the Phase II objectives as well. 

 

C. _Organization of the Report_ 

 

The remainder of this report consists of four additional sections and two 

appendices.  Section II ("Background") describes the motivation for the proposed 

research effort, both relative to the requirement for fast algorithms and for 

robust algorithms.  Section III ("Project Approach") describes the methodology 

for conducting the Phase I investigation.  The methodology consists of the 

specification of performance criteria, the simulation of test-case data with 

which to test the performance of alternative algorithms, the synthesis of one or 

more candidate "fast algorithms," and the comparison of the performance of the 

synthesized method to the classical least-squares method using the specified 

criteria and the test-case data.  Section IV ("Simulation Results") presents the 

results of this simulation study.  Section V ("Conclusions and Recommendations") 

summarizes the study conclusions and describes the additional research and 

development thata is needed to develop and implement the proposed concept.  The 

Appendices contain source code listings of all computer programs used in this 

study (Appendix A), and detailed output listings (Appendix B). 

 

 

II. BACKGROUND 
 

A. _General Motivation for the Proposed Study_ 

 

This report describes the results of a research study to assess the feasibility 

of developing fast algorithms for real-time estimation, prediction and control. 

Such algorithms would provide a solution to a critical problem faced in both 

industrial and military applications -- the fact that the algorithms used to 
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implement state-of-the-art statistical estimation, prediction and control 

techniques are far too slow for many real-time or near-real-time applications of 

high interest, even using the fastest computers. 

 

The slowness of statistical correlation/tracking techniques such as  the Kalman-

Bucy filter was one of the principal reasons for the failure of the ballistic 

missile defense program of the l960's.  This problem has still not been 

satisfactorily solved, even with substantial improvements in computer processing 

speed and direct-access storage capability.  Modern command, control, 

communications, and intelligence (C3I) systems such as those intended to support 

the AirLand Battle concept, the Air Force's Tactical Air Control Center, or 

Naval tactical data systems require multisensor correlation/fusion to be 

performed in real time or near real time.  The success of such systems is in 

jeopardy to the extent that they rely on data processing by traditional 

statistical algorithms. 

 

In addition to military applications, the availability of fast prediction and 

control algorithms would assist control of rapid, time-varying processes 

occurring in industry and commerce (e.g., hot steel finishing mills and air 

traffic control), for which available prediction and control methods are 

generally heuristic, because of the current inability to conduct on-line system 

identification (and thereby use model-based predictors/controllers). 

 

B.  _The Requirement for Fast Prediction/Control Algorithms_ 

 

Over the past two decades, tremendous advances have been made in the development 

of powerful statistical estimation techniques. The applications associated with 

these techniques cover a wide variety of fields, including scientific, economic, 

industrial, and military applications. In general, present-day statistical 

estimation procedures represent extensions of the work of Gauss, who developed 

the least-squares method of estimating the position of an asteroid, based on 

observations which contained measurement errors.  Gauss's method, or the method 

of least squares, consists in determining a set of model parameters in such a 

way that the sum of squares of the differences between the actual measurements 

and the position estimates based on the model is minimized. 

 

A salient characteristic of the method of least squares is that it requires 

computation of a "cross-products" matrix (or a covariance matrix or a 

correlation matrix), and it requires the inversion of a matrix whose order 

depends on the number of parameters being estimated.  In many applications, this 

presents no problems, since statistical analysis need not be done in "real-

time."  Instead, in most applications the analyst may collect the observed data, 

and then determine the parameter estimates "off-line" in the hours, days, or 

weeks that follow.  In some applications, however, such as those involving the 

tracking of fast-moving objects (such as missiles, airplanes, or satellites), or 

the control of rapidly-changing systems (such as certain industrial processes), 

it is necessary to estimate the parameters "on-line," in real-time or near-real-

time.  In problems in which attention centers on only one or a few processes at 

a time (e.g., a small number of objects are being tracked, or a small number of 

electromagnetic emitters are being monitored), the computational burden is not 

severe.  If numerous tracks (or emitters) are involved, or the underlying system 

changes "too fast," the method of least-squares breaks down -- the computational 

requirements may saturate even the most powerful (fastest, largest) computers 

available. 

 

In an attempt to remedy this problem, a tremendous amount of effort has been 

expended on the development of computationally efficient algorithms for 
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determining least-squares estimates.  In l960, Kalman and Bucy developed a 

recursive solution to the least-squares estimation problem, now called the 

Kalman filter (or Kalman-Bucy filter).  Kailath (Reference 1) provided a 

comprehensive survey of over 600 references on filtering.  Aggarwal (Reference 

2) describes the problem of developing least-squares algorithms that are 

numerically stable and computationally efficient. 

 

One approach to reducing the computational complexity of tracking algorithms is 

linearization.  While this procedure helps, it is not sufficient.  As an example 

of the inadequacy of linearization, it is noted that the ballistic missile 

trackers proposed in the 1960's were in fact simplified nine-component Kalman 

filters in which the equations of motion had been linearized, and the covariance 

matrix radically simplified.  Yet this approach still failed, because of the 

tremendous computational requirements of the general linear model and the least-

squares estimates. 

 

As a further example of the inadequacy of linearization, it is noted that 

neither the Kalman filter nor the Box-Jenkins (autoregressive-integrated-moving-

average time series) models could outperform the heuristic alpha-beta tracker, 

in air traffic control studies of the early 1970's.  As a final example, it 

appears that in complex correlation/tracking problems (e.g., satellite ocean 

surveillance, intelligence analysis of electromagnetic emissions for unit 

identification), heuristic nonlinear "algorithmic" procedures work better than 

procedures derived from linear-model theory. 

 

The potential exists to reduce the computational burden of prediction/control 

algorithms by a factor of several orders of magnitude.  Furthermore, this 

reduction can probably be achieved at very modest cost -- a few person-years of 

research effort.  This investment is negligible, when compared to the massive 

research investment that will be required to develop even a hundred-fold 

increase in computer speed, through the development of an operational large-

scale parallel-processor or bio-chip technology. 

 

In addition to improvements in the computational efficiency of least-squares 

algorithms, tremendous gains have been made in the speed of the computers which 

perform the least-squares computations.  Advances such as Very Large-Scale 

Integration (VLSI) technology have increased computer processing speeds and 

direct-access storage capabilities by a factor of one thousand since the mid-

1960's, when the feasibility of performing least-squares tracking of incoming 

ballistic missiles was seen to exceed available computational capabilities. 

 

Despite the tremendous computational gains of the last fifteen years, however, 

it appears that further advances may be elusive.  Computer processing technology 

is now running up against physical limits, such as the time required for 

electronic signals to propagate along the wires inside the computer.  As 

reported in a recent issue of _Defense Science_ (Reference 3), advances in 

computational speed are leveling off (see Figure 1).  In order to achieve 

processing speed increases of two orders of magnitude or more with physical 

devices, it appears that parallel processing architectures will be required.  

Unfortunately, formidable problems are associated with the development of large-

scale parallel processors and associated software, and a substantial amount of 

basic research and development will be required. 

 

To achieve further increases will probably require the development of "bio-

chips," in which synthetic organic molecules perform the binary switching 

functions of present-day physical switches such as silicon or gallium arsenide 

field-effect transistors.  In principle, the use of bio-chip molecular switches 
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could lead to circuit elements one thousand times smaller than may be achieved 

by conventional semiconductors.Developments in this area may be slow, however, 

since even the most promising of the bio-chips -- the soliton switch -- is still 

theoretical. 

 

In summary, it does not appear likely to significantly improve the computational 

speed of least-squares algorithms, and the likelihood of realizing substantial 

increases in computer speed very soon is not high.  In order to achieve 

substantial gains in processing speed in the near term, then, it appears that 

the most promising approach is to develop estimation procedures which impose a 

substantially reduced computational burden. 

 

C.  _Early Accomplishments in the Area of Low-Compute Estimation Procedures_ 

 

1.  _Experimental Design Applications_ 

 

In the 1930's and 1940's, tremendous advances were made in the development and 

application of the general linear statistical model, to solving problems in 

statistical experimental design.  In those days, however, no computers (other 

than human beings) were available for solving large-scale systems of linear 

equations, and ingenious methods were developed to determine designs for which 

the estimators could be determined without the need for explicit matrix 

inversion. 

 

The advantage in the field of experimental design, of course, is that the 

statistician has control over the values of the explanatory variables of the 

model.  The popular experimental designs developed in the 1930's and 1940's 

(randomized blocks, Latin squares, fractional factorial, partially-balanced 

incomplete blocks) were models in which the designer introduced various degrees 

of orthogonality into the "design matrix" of the model, so that the equations of 

estimation could be easily solved. 

 

The point to be recognized here is that, in the face of a strong requirement to 

develop low-compute estimation procedures in experimental-design applications, 

tremendous advances were made.  The underlying theory was complex (Galois theory 

and projective geometries), but the computational algorithms that resulted were 

extremely simple, allowing for the rapid hand-solution of estimation problems 

containing large numbers of variables. 

 

2.  _Regression-Model Applications_ 

 

In regression analysis, the statistician does not always have control over the 

values of the explanatory variables, as is the case in experimental design.  

Nevertheless, in the period 1920-1950 significant advances were made in the 

field of developing low-compute procedures for soving regression problems.  The 

_Biometrika Tables for Statisticians_, which were published in 1953 to "reduce 

the labour of statistical arithmetic," included tables of orthogonal 

polynomials, which vastly reduced the amount of computation required to produce 

estimates of linear contrasts.  These tables were of invaluable aid to 

statisticians in computing estimates of regression model parameters until about 

1960, when high-speed digital computers became generally available in research 

facilities.  At that time, it appears that just about all effort directed toward 

computational simplicity ceased.  A digital computer could, in minutes, invert 

large matrices that simply could not be inverted manually. 
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It is interesting to note that it was at just about this same time that Kalman 

and Bucy developed their recursive scheme for determining estimates and 

predictions for a linear time-series model.  The computational requirements of 

their method were staggering from a manual perspective, but offered no 

difficulties when tackled by a digital computer.  Over the next twenty years, 

advances were made in the development of more rapid or more precise algorithms 

for implementing the Kalman-Bucy filter, but these methods accepted the basic 

linear-model-estimation formulas of the recursive filter as a starting point.  

With this mind-set, the computational requirements of the Kalman-Bucy filter 

were never substantially reduced. 

 

In a serendipitous fashion, however, it is interesting to observe that some 

advances were inadvertently made in the development of low-compute estimators 

for the non-time-series linear (regression) model.  These developments, by Wald 

and Bartlett, are described in the paragraphs that follow. 

 

In its simplest form, the general linear statistical model (which forms the 

basis for modern estimation, prediction, and control algorithms) may be written 

as: 

 

     _y_ = X'_p_ + _e_, 

 

where 

 

     _y_ = vector of observations; 

 

     _p_ = vector of parameters; 

 

     X = matrix of explantory variables ("data matrix"); 

 

     _e_ = error vector, 

 

and the prime (') denotes matrix transposition.  In correlation/tracking and 

fusion problems, the form of the equations changes somewhat (e.g., there are 

"model" and "observation" errors, and the representation is usually in terms of 

a state vector), but the elementary form given above will serve to illustrate 

the nature of the estimation algorithms. 

 

The least-squares estimate of the parameter _p_ is given by:  

     _p_ = (XX')*X_y_ 

 

where the asterisk denotes a conditional (generalized) inverse of a matrix.  The 

key point to note with the least-squares estimate is the fact that it involves 

matrix products and matrix inversion.  (As the model becomes more complex, the 

number of matrix operations increases.) 

 

In the simple example of regression analysis (fitting a straight line), the 

above model reduces to: 

 

     yi = p1 + p2xi + ei, 

 

where the index i denotes the i-th observation (i = 1,2,...,n), and the least-

squares estimates of the parameters (the intercept and slope of the line) are: 

                      _ _       _ _ 

                (xi - x)(yi - y) 

     p2 =     _                  _ 

                            _ _ 
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                      (xi - x)2 

 

and 

          _ _     _ _ 

     p1 = y - p2x 

       _ _      _ _ 

where x and y denote the means of the observed x's and y's, respectively. 

 

In 1940, Abraham Wald (the "father" of statistical decision theory and 

sequential analysis) proposed (Reference 5) a much simpler estimator as an 

alternative to p2: 

            _ _    _ _    _ _    _ _ 

     p2 =  (y2 - y1)/(x2 - x1) 

       _ _       _ _ 

where x1 and x2  denote the means of the x-values above and below the median (of 

the x's) and y1 and y2 denote the means of the corresponding y-values (i.e., the 

y-values associated with the x-values).  Wald originally proposed this estimator 

as a solution to the problem in which both the x variable and the y variable are 

subject to error.  It is interesting to observe, however, that Wald's estimate 

requires substantially less computation than the least-squares estimator -- 4n 

additions and one division versus 4n additions, 2n multiplications and one 

division, where n denotes the number of observations.  This represents a 

reduction in computer time by an order of magnitude. 

 

Wald's estimator possesses the desirable statistical property of consistency 

(which the least squares estimate does not, in the errors-in-variables problem), 

but the sampling variance of the estimator is larger than for the least-squares 

estimate.  This inefficiency may be overcome by taking a slightly larger sample, 

in which case the Wald estimate still has the computational advantage. 

 

In 1949, M. S. Bartlett (Reference 6) modified Wald's estimator by dividing the 

ranked x-variable into three equal-sized groups, and forming the estimate 

           _ _    _ _    _ _    _ _ 

     p2 = (y3 - y1)/(x3 - x1) 

 

        _ _    _ _ 

where x1, y1 are the means corresponding to the low-value group of x's, and x3, 

y3 are the means corresponding to the high-value group of x's.  Bartlett's 

estimator is more efficient (i.e., has lower sampling variance) than Wald's 

estimator, and requires 1/3 less computation. 

 

In 1958, J. W. Hooper and H. Theil (Reference 7) extended the Wald/Bartlett 

method of grouping to the case of multiple linear regression (in which there is 

more than one x-variable).  The method was judged somewhat tedious to implement, 

however, and was essentially abandoned.  Note that this was about the time when 

high-speed digital computers (e.g., the IBM 650) were becoming generally 

available (at least in the major universities and research centers), and so 

there was at that time no longer an incentive to prefer the Wald-type estimators 

to the least-squares estimators on computational grounds.  (For the errors-in-

variables problem, for which the Wald's estimator was orginally developed, a 

method by J. Durbin, introduced in 1954, was generally adopted as a perferred 

method.  It is more (statistically) efficient than the Wald and Bartlett 

estimators, but is not relevant to the present problem because it requires the 

same amount of computation as the least-squares estimation procedure.) 

 

It is interesting to observe that both the Wald and Bartlett estimators may be 

derived from the formula for the least-squares estimates, by replacing the 
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values of the explanatory variables by +1's and -1's in the case of the Wald 

estimator, and by +1's, -1's, and 0's in the case of the Bartlett estimator.  

This procedure is analogous to the procedure of determining an experimental 

design: the x-values are set at values which enable the equations of estimation 

to be solved without explicit matrix inversion.  (The difference is, of course, 

that in the case of experimental design, the specified x-values are actually 

used in the experimentation process, whereas in the regression case, the actual 

(continuous) x-value is replaced by the simpler discrete value.) 

 

The point to the above is that, with a little ingenuity, it is possible to 

develop estimators that have drastically reduced computational requirements, 

over those of the least-squares estimates.  The preceding example addresses the 

simplest situation (one dependent variable, one explanatory variable), with no 

matrix multiplications or inversions required, and yet a reduction in 

computational requirenents of an order of magnitude were realized.  In the 

general case of several or many variables (e.g., a Kalman filter for a nine-

component state vector), involving many matrix multiplications and inversions, 

the potential for dramatic computational reductions is tremendous. 

 

A review of the statistical literature of the past two decades reveals a 

fixation with least-squares estimation.  To be sure, some new estimators have 

been introduced (e.g., jacknife estimators), but they are computationally 

similar to the least-squares estimates (requiring matrix multiplications and 

inversions), and have similar computational efficiencies.  It appears that the 

effort to improve computational efficiency has been conditional on use of the 

least-squares approach, rather than on centering on novel estimation procedures.  

The criteria against which the procedures are invariably judged is the error-

variance of the minimum-variance linear unbiased estimator.  While restriction 

to this criterion may be reasonable for off-line statistical estimation, it is 

not reasonable to restrict attention to this single criterion for the large-

scale on-line (real-time) estimation situation.  We believe that, once the 

criteria against which the estimator are to be judged are appropriately 

modified, significant and substantial improvements will follow. 

 

E.  _Parallel with Optimization Theory_ 

 

In a sense, the situation with respect to the use of the general linear 

statistical model and the least-squares estimates parallels the situation that 

existed in the 1950's in the field of optimization theory.  At that time, the 

principal optimization procedure was linear programming.  The framework of 

linear programming did not suit many practical applications, however, and so 

alternative nonlinear programming methods were sought.  In 1963, the Generalized 

Lagrange Multipliers method was introduced by H. E. Everett.  This powerful 

method produced very fast solutions to very large optimization problems in which 

the objective function could be nonlinear, non-convex, and discontinuous. The 

GLM method had a tremendous advantage over previous optimization procedures, in 

that it did not require the solution of a large-scale system of equations.  

Unfortunately, the GLM method is restricted to problems in which the objective 

function is "separable," i.e., may be expressed as a certain sum.  Furthermore, 

it was not possible to guarantee convergence of the method, and in some cases 

convergence could be slow. 

 

In the late sixties, Fiacco and McCormick promoted the use of "quadratic penalty 

fuctions" to solve constrained optimization problems.  This approach (called the 

Sequential Unconstrained Minimization Technique, or SUMT) worked well for a 

larger class of problems, but in general it did not possess the great speed of 
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the GLM method.  Also, the method fails in a fairly wide class of problems in 

which the Hessian matrix is "ill-conditioned" (not positive definite). 

 

Finally, also in the late 1960's, the two methods were combined into what is now 

known as the "generalized Lagrangian method."  Hestenes and Powell suggested 

adding a quadratic penalty function to the _Lagrangian_ function, instead of the 

_objective_ function, as is done in the SUMT method.  The generalized Lagrangian 

method converges fast, and does not exhibit the ill-conditioning that frequently 

occurs in the original penalty-function method (SUMT). 

 

Thus, in a span of about ten years, a tremendous leap forward was made in 

solving constrained optimization problems.  The interesting fact to note, 

however, is that whereas the linear programming solution (the simplex method) 

had a very well-behaved theory associated with it, and was guaranteed to 

converge in a predetermined number of steps, the generalized Lagrangian methods 

possessed no such property -- the methods are defined as algorithms (for 

adjusting the values of Lagrange multipliers), and no definitive statement can 

be made about the rate of convergence. 

 

The fact remains, however, that by moving out of the very restrictive linear-

model framework, tremendous advances were quickly realized.  Furthermore, 

satisfactory solutions were not achieved by "linearizing" nonlinear problems, 

but by developing heuristic algorithmic procedures, which were demonstrated to 

work well. 

 

While the problems of estimation, prediction, and control are statistical in 

nature, they are also optimization problems, and it is reasonable to conjecture 

that a tremendous advance in speed may be realized by applying the ingenuity and 

heuristic methods that worked so well in the field of constrained optimization.  

The current situation -- a near-total dependence on the general linear 

statistical model -- is analogous to the situation in which the field of 

constrained optimization theory found itself twenty-five years ago.  It would 

appear that much can be done. 

 

F. _The Need for a Robust Estimator_ 

 

During the course of this Phase I study, it was observed that the algorithm that 

had been synthesized as a candidate "fast" algorithm possessed a remarkable 

property -- it produced reasonable results when applied to "difficult" problems, 

in which the classical least-squares method failed catastrophically.  The 

"difficult" problems were ones in which the correlation matrix that had to be 

inverted in the classical least-squares method was "near-singular" (i.e., had a 

small determinant).  This situation arises whenever the explanatory variables of 

the model are highly correlated.  In this case, inverting the correlation matrix 

(which is central to the classical least-squares method) is difficult (in a 

numerical analysis sense), particularly for large or even moderately large 

matrices (e.g., m = 10 explanatory variables).  What happens is that roundoff 

errors (due to the truncated representation of real numbers in the computer) 

ruin the matrix inversion, and the matrix inversion algorithm fails to produce 

the desired inverse.  The least-squares method in fact fails "catastrophically," 

in the sense that the produced results are generally totally wrong -- the 

resultant model produced by the method may predict even worse than the "trivial" 

model that predicts the mean value of the dependent variable for all values of 

the independent variables.  This problem is ameliorated somewhat by using double 

precision arithmetic, but it is a particularly troublesome problem in a 

microcomputing environment, where the computer word length is short (and the 

precision of computation is low).  The problem is a particularly insidious one, 
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since many statistical analysis programs do not warn the user that the method 

has failed, and if the results do not appear to be patently absurd, they may be 

accepted as correct. 

 

In addition to the problem of near-singular correlation matrices, the problem of 

catastrophic failure may arise if a a problem is "ill-conditioned," or "ill-

specified."  This happens, for example, if there is a linear dependency among 

the independent variables (the x's).  This situation often arises in social 

science applications.  In a survey questionnaire, for example, the respondent 

may be asked to select an answer in one of a number (e.g., five) of categories.  

In the analysis of the survey data, the response for the selected category is 

coded as a "1," and the response for the other categories are coded as "0's."  A 

social science researcher who is not aware of the matrix inversion to be done in 

a regression analysis may include all five responses as variables in the data 

base, and in a regression model.  These variables are linearly dependent, 

however, since the sum of all five category responses must equal 1.  The 

presence of this linear dependency in the dependent variable will cause the 

correlation matrix to be singular.  Once again, the least-squares method, if 

applied to this problem, will fail catastrophically.  This case is often not as 

troublesome as the "near-singular" case, however, since the presence of an exact 

linear dependency may result in a computed matrix determinant of exactly zero, 

and some computer programs check for this condition.  Because of roundoff 

errors, however, the computer algorithm may fail to recognize the singularity, 

compute a nonzero numerical value for the determinant, and produce a "solution," 

which, unfortunately, is totally wrong. 

 

This situation is a very real problem.  Many users of statistical program 

packages are not trained in the theory underlying the computations and are 

unaware of the pitfalls of the least-squares method.  Researchers in social 

science are now trained in university curricula in how to apply the statistical 

procedure of multiple regression analysis, but they are not expected to know 

matrix algebra and are generally not trained in it as part of their introduction 

to statistics.  As a professional consulting statistician, the author of this 

report has been retained on more than one occasion to "explain" absurd results 

obtained because of the problem of linear dependencies in regression analysis 

applications.  In technical terms, the classical least-squares method is not 

"robust" with respect to the presence of linear dependencies or near-

dependencies (high correlations) in the explanatory variables. 

 

Statistical theory can handle the presence of linear dependencies, if they are 

recognized.  In such cases, the inverse of the correlation matrix is replaced by 

a "generalized inverse" or "conditional inverse."  Although this theory is 

generally taught to graduate statistics majors, however, it is not known to most 

data analysts.  Moreover, most of the major statistical software packages do not 

offer this capability. 

 

The present study began as an attempt to determine the feasibility of finding 

fast algorithms for estimation, prediction, and control.  In the course of the 

study, an algorithm was developed that did not fail catastrophically in 

"difficult" problems.  Upon observing this, it was decided to explore the 

performance of the algorithm in ill-conditioned problems containing linear 

dependencies.  The method works well in such cases.  The significance of this 

result could be very great from a commercial viewpoint, in view of the extensive 

use of statistical multiple regression analysis.  Moreover, virtually all 

multivariable statistical analysis procedures involve matrix inversion.  All of 

these methods are subject to catastrophic failure, and are candidates for 

application of a method that does not require matrix inversion. 
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III. PROJECT APPROACH 
 

 

A. _Summary of Approach_ 

 

The approach proposed for this study consisted of four major steps: 

 

     1. Development of Criteria for Comparing Alternative 

        Estimation Algorithms 

 

     2. Generation of Test Cases 

 

     3. Synthesis of Candidate Algorithms 

 

     4. Comparison of the Performance of Candidate  

        Algorithms to the Perfomance of the Classical 

        Least-Squares Algorithm 

 

Each of these steps is described in detail in the following subsections. 

 

B. _Development of Criteria for Comparing Alternative Estimation Algorithms_ 

 

In order to assess the performance of alternative procedures for estimation, 

prediction and control, it is necessary to identify a number of quantitative, 

measurable descriptors of performance.  Alternative procedures may differ in a 

number of respects, such as processing speed and accuracy.  It is desirable to 

identify a set of performance measures, or criteria, which afford a relatively 

comprehensive description of algorithm performance, and yet is not overly 

redundant. 

 

It is noted that the performance measures that are appropriate for an algorithm 

may vary, depending on whether the algorithm is intended for use for estimation, 

or for prediction, or for control.  In an estimation problem, attention centers 

on estimating the model parameters (bo, _b_,  , SIG, SIGMA) as closely as 

possible.  In a prediction or control problem, attention centers on using the 

model for predicting a new value of y corresponding to a specified set of x-

values.  How close the parameter estimates are to the true values is of 

secondary interest in this situation.  (In a "prediction" problem, the x's are 

either passively observed or actively controlled; in a "control" problem, the 

x's are actively controlled.  The problem of predicting the state of the economy 

is essentially a prediction problem; the problems of controlling a steel 

production process or directing a "smart" bomb to a target are examples of 

"control" problems.)  The intended application of the model -- estimation, 

prediction or control -- should influence the sample design for the collection 

of the data from which the model is to be estimated.  For example, if a model is 

to be used to predict how the dependent variable (y) will respond to forced 

changes in the independent variables (x's), then the data should correspond to 

the case in which forced changes are made in the x's.  A model developed from 

passively-observed x's is not appropriate for predicting how the system will 

respond if forced changes are made in the x's (although this is often done, with 

dissapointing results!). 
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After consideration of the various uses (estimation, prediction and control) of 

the models under study, and of the various properties of algorithms that may be 

of interest to model developers, it was decided that the following seven 

concepts characterized the algorithm performance in reasonably comprehensive 

fashion: 

 

     1. Computer running speed 

 

     2. Computer storage requirements 

 

     3. Precison of the parameter estimates 

 

     4. Bias of the parameter estimates 

 

     5. Mean squared error of the parameter estimates 

 

     6. Precision of model-based predictions 

 

     7. Numerical stability of the algorithm 

 

Having decided on these concepts as comprising a relatively comprehensive 

characterization of the performance of an algorithm, it remained to determine 

quantitative measures of each concept.  These concepts and their associated 

measures are described in the paragraphs that follow.  Note that, although the 

preceding concepts were identified as part of the Phase I report, it was not 

possible with the Phase I resources to numerically determine values for all of 

the measures.  That numerical determination can be accomplished with some 

additional programming, and should be done as one of the first steps in the 

Phase II study. 

 

1. _Computer Running Speed_ 

 

The primary motivation for the proposed study was to determine the feasibility 

of determining estimation, prediction and control algorithms that had faster 

running times than the classical least-squares method.  The measure of speed 

that was used in this study was the total elapsed time required to read the data 

from the file on which it was stored, compute the parameter estimates, and print 

out the results.  The time required to "set up" the run (e.g., specify the data 

file name, number of parameters, number of observations, etc.) was not included, 

since this time consists mainly of the time of the human operator to enter data 

through the microcomputer keyboard, and does not reflect algorithm performance. 

 

All of the computer programming and processing on this project was done using a 

Radio Shack Model II microcomputer using a TRSDOS Version 2.0 operating system.  

This microcomputer utilizes a 4 MHz Z80 microprocessor, and has 64 kilobytes of 

direct access memory.  The programming was done in FORTRAN II, using a Microsoft 

(R) FORTRAN compiler to produce the object code.  Unfortunately, the available 

Microsoft FORTRAN did not permit access to the system timer, and so the timing 

was done manually (external to the program), not automatically (internal to the 

program).  The running times presented in this report are hence approximate.  In 

addition to algorithm processing time, they include the time required to print 

the results.  The amount of printed output for the various methods is 

comparable.  For the simpler cases examined, the algorithm processing time was 

very short compared to the print time, and so the total measured running time is 

not an accurate reflection of the processing time.  For the more difficult 

cases, the algorithm processing time is large relative to the print time, and so 
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the measured running time is a relatively valid indicator of algorithm 

processing time. 

 

It is recognized that the speed measure used in this study is very crude, 

particularly for problems having a small number of explanatory variables (since 

the processing time for these problems is small compared to the data access and 

printout time).  In Phase II, we propose to develop an assembly-language timer 

that can be called internal to the program, so that accurate measures of 

processing time can be determined. 

 

The time measurements for the iterative algorithm were biased high in many 

cases, because the algorithm was forced to make at least ten iterations even if 

convergence had already occurred.  In Phase II, a test for convergence should be 

developed, so that the algorithm stops when convergence occurs. 

 

2. _Computer Storage Requirements_ 

 

The amount of direct-access computer memory required to implement an algorithm 

is a concern, since it determines how "large" a problem can be handled with 

available memory, or how much memory is required to handle a problem of a given 

size.  The size of an estimation problem is determined primarily by two factors 

-- the number of observations and the number of explanatory variables (we are 

speaking here only the univariate case, in which there is but a single dependent 

variable).  The classical least-squares method has an advantage in that the 

observations may be read and processed one-at-a-time, and do not need to be 

stored simultaneously in memory.  The particular "fast algorithm" that was 

considered in this study required that all of the data be stored in memory. 

 

Although the required amount of direct-access memory required depends on the 

problem size, the computer programs developed in this project did not 

dynamically adjust the memory requirement to the size of the problem.  Instead, 

the "dimensions" of the program variables were set to allow for storage of all 

observations and variables, corresponding to the largest problem analyzed -- 100 

observations and ten independent variables (and a single dependent variable).  

Under these conditions, the core requirements of the classical least-squares 

algorithm and the particular "fast algorithm" investigated in this study were as 

follows: 

 

     Least-squares algorithm:  20,984 bytes 

 

     Fast algorithm:           21,759 bytes, 

 

i.e., the core requirements are approximately the same. 

 

3. _Precision of the Parameter Estimates_ 

 

In an estimation problem, it is desired to determine ("estimate") the values of 

the model parameters as "closely" or "accurately" as possible.  The model 

parameters are bo, _b_,  , SIGMA, and SIG.  With regard to estimation, however, 

we are generally interested only in bo, _b_, and SIG, not in   or SIGMA.  The 

reason for this limitation is that the parameters   and SIGMA are not generally 

of concern in an estimation problem once the x's are known.  The usual objective 

in a data analysis is to estimate the values of bo, _b_, and SIG, or to predict 

the value of a new y given specified values of the x's.  While the fact that the 

x's are random variables can affect some analysis procedures (e.g., hypothesis 

testing), the least-squares estimates are the same whether the x's are fixed 

numbers or random variables.  For this reason, we shall restrict attention only 
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to measures of precison of the estimates of bo, _b_, and SIGMA.  This 

restriction applies also to the next two performance concepts considered (bias 

and accuracy). 

 

Accuracy is usually reflected in two concepts -- precision and bias.  The 

"precision" (or reliability) of an estimator (i.e., an estimation formula or 

algorithm) refers to the degree of reproducibility, or variation, of the 

estimates, if repeated data samples were selected and the estimator used to 

determine the estimate value for each sample.  The usual measure of precision is 

the standard deviation (square root of the variance, or second central moment).  

The "bias" of a parameter estimator is the amount of systematic error in the 

estimate, measured as the difference between the average value obtained for the 

parameter estimate in repeated sampling and the true value of the parameter.  

(Note: in the preceding discussion, we have used the distinction that an 

"estimate" is a numerical value that represents our guess as to the value of the 

parameter, whereas the term "estimator" refers to the formula or algorithm for 

producing that numerical value.  This distinction in usage of these terms is not 

strict, either in the field of statistics or in this report.) 

 

In the present study, it was possible to estimate the precision of the parameter 

estimates for the classical least-squares method, but project resources dis not 

permit the estimation of precision of the parameter estimates for the fast 

algorithm studied.  Closed-form mathematical formulas are available for 

estimating the precision of the least-squares estimates, but such is not the 

case for estimating the precision of the fast algorithm estimates.  Instead, the 

precision has to be measured empirically, by selecting many independent data 

samples and computing the standard deviation of the parameter estimates over 

these samples.  Although it was not possible to implement this procedure in 

Phase I (because of resource limitations), the estimated standard deviation of 

the parameter estimates is considered to be an important measure of algorithm 

performance, and this procedure should be implemented in the Phase II effort. 

 

While the precision and bias of the parameter estimates are of high concern in 

estimation problems, they are of secondary conern in prediction and control 

problems.  In the latter types of problems, it is the accuracy of the prediction 

that is of primary concern.  It is possible to have a model in which the 

parameter estimates are not very accurate, and yet the accuracy of the 

predictions based on that model is comparable to those obtained from a model in 

which the parameter estimates are substantially more accurate.  (This may be the 

case, for example, if the explanatory variables are highly correlated.) 

 

The precision of most statistical estimates increases as the sample size (number 

of data observations) increases, usually by the factor 1/ n (for the standard 

deviation). 

 

4. _Bias of Parameter Estimates_ 

 

The bias of an estimate is the expected value (over repeated data samples) of 

the difference between the expected value of the parameter estimate and the true 

value of the parameter.  The bias of an estimator is of greater concern in 

estimation probalems than in prediction and control problems. 

 

As was the case in the measurement of precision, Phase I project resources did 

not permit the generation an analysis of a large number of data samples 

(corresponding to the same model parameters) to estimate the bias. 

 

The bias of an estimator may or may not decrease as the sample size increases. 
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5. _Mean Squared Error_ 

 

The mean squared error is a measure of accuracy -- i.e., it is a "combined" 

measure of precision and bias.  The definition of the mean squared error of a 

parameter estimator is: 

 

     Mean Squared Error = variance + bias2 

 

or 

 

     E(!p - p)2 = E(!p - E(!p))2 + (E(!p) - p)2, 

 

where p is the parameter value and !p is the estimate, i.e., the mean squared 

error is the expected value of the square of the difference between the 

estimated parameter value and the true parameter value, over repeated data 

samples. 

 

Once more, Phase I resources did not permit the numerical determination of the 

mean squared error, but this can be done in Phase II. 

 

6. _Precision of Model-Based Prediction_ 

 

The three preceding measures are concerned wtih measurement of the "closeness" 

of the parameter estimates to the true values, or to the amount of variability 

in the parameter estimates in repeated data samples.  For prediction problems, 

the primary concern is how close the model-based predictions (of y, the 

dependent variable) corresponding to a specified set of x-values will be to a 

newly-sampled y corresponding to those x-values.  An interesting fact is that 

there can be fairly substantial errors in the estimation of the model 

parameters, and yet predictions based on the (erroneous) model may be almost as 

good as those based on a much-more-nearly-correct model.  In some applications 

(e.g., econometric modelling), attention centers very much on estimation of the 

model parameters.  In other applications, the parameter values are of incidental 

interest -- all that matters is the error of prediction. 

 

A standard indicator of the prediction error is the estimated variance or 

standard deviation of the model "residuals," or error terms (differences between 

the observed y-values and those predicted by the model).  This is not the same 

as the standard deviation of the prediction error for a particular set of x's, 

which depends also on the specified values of the x's.  The standard deviation 

of the prediction error is proportional to the standard devaition of the 

residuals, however, and so the latter is a good indicator of the predictive 

ability of the model. 

 

Another indicator of the predictive power of a model is the reduction in 

variance between predictions based on the trivial model that predicts that each 

new y will equal the mean (of the y's), and the variance of the predictions 

based on the estimated model.  (This measure is valid only for application of 

the model to predict y-values from x-values that were produced in the same 

fashion -- e.g., passively observed, forcibly changed -- as were those from 

which the model parameters were derived.  Also, its use assumes that the 

theoretical variance of y is finite, which is often not the case for time series 

data.)  The standard error of the residuals is best estimated from a sample 

other than that from which the model parameters were derived, but as long as the 

number of parameters is very small relative to the number of observations, it is 

common practice to use the same data set for both purposes. 
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The reduction in variance for predictions based on the "mean model" compared to 

predictions based on the estimated model is called the "coefficient of 

determination."  It can be defined as: 

 

     CD = 1 - (variance of predictions using "mean model") 

           /(variance of predictions using estimated model) 

 

The coefficient of determination was determined both for the classical least-

squares model and the fast algorithm algorithm studied in this project. 

 

6. _Numerical Stability of the Algorithm_ 

 

The three preceding measures of algorithm performance are appropriate in most 

cases.  In some situations, however, an algorithm may fail to operate as 

intended because of computer roundoff errors or because of an intrinsic weakness 

in the algorithm, such as a failure to converge to an answer close to the 

desired answer, or a failure to converge at all.  The length of time required 

for convergence to a desired answer is considered under performance measure 1 

(computer processing speed), if the process converges.  (An additional measure 

of performance that is of interest in studying the performance of an iterative 

algorithm is the "rate" of convergence, or the number of iterations required for 

convergence.) 

 

Some of the test cases examined in the project present difficulties, for both 

the classical least-squares and the fast algorithm.  In some such cases, the 

algorithm may fail catastrophically, i.e., produce totally wrong results.  In 

other such cases, the algorithm may produce an answer (i.e., set of parameter 

estimates) that is not very close to the correct answer (i.e., the true 

parameter values).  Those cases are noted, with an indication of the nature of 

the failure.  For example, the classical least-squares method may fail because 

of an inability to invert a near-singular matrix.  Or, a "fast" algorithm may 

converge very slowly. 

 

2. _Generation of Test Cases_ 

 

The performance of an estimation algorithm may vary, depending on the nature of 

the data set to which it is applied.  We proposed to develop a set of test cases 

to which candidate algorithms could be applied, and to measure their performance 

relative to each test case.  Although there is an infinite variety of test cases 

that might be considered, it was possible in the present project to generate and 

analyze only a few.  It was decided to examine sixteen cases in all.  The nature 

of these test cases was described in Section I of this report.  The test cases 

differ in terms of the number of variables included in the model, and in terms 

of the complexity of the model, as reflected in the covariance matrix of the 

explanatory variables (x's). 

 

The general model considered in this study was of the following form: 

 

 

     yj = bo + _x_j'_b_ + ej     j=1,2,...,n 

 

or 

 

     _y_ = bo_1_ + X'_b_ + _e_ 
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where 

 

     yj = dependent variable 

 

     _y_' = (y1,y2,...,yn) = vector of all  

 

            observed y's 

 

     _x_j' = (x1j,x2j,...,xmj) = vector of inde- 

 

               pendent variables corresponding to the  

               j-th observation 

 

     X = (_x_1,_x_2,...,_x_n) = data matrix 

 

     _e_' = (e1,e2,...,en) = vector of model error 

 

            terms corresponding to all observations 

 

     bo = y-intercept 

 

     _b_' = (b1,b2,...,bm) = vector of regression 

 

            coefficients 

 

     var(_x_j) =   SIGMA2 

 

     var(_e_) = I SIG2 

 

     _1_' = (1,1,...,1) = n-component vector of all 1's 

 

where   is an mxm covariance matrix and I is an nxn identity matrix.  The 

various test cases correspond to four different values of m (m = 1, 3, 6, and 

10), various values of SIGMA and SIG, and various covariance matrices  . 

 

The x's are random variables that are generated as follows.  First, m 

independent random variables, f1,f2,...,fm, normally distributed with mean 0 and 

variance SIGMA, are sampled.  An mxm coefficient matrix, C, is then specified: 

 

     C = {cij} . 

 

The x's are computed as 

 

     _x_ = C _f_ . 

 

The covariance matrix of _x_ is 

 

     var_x_ = CC' SIGMA2 =   SIGMA2 , 

 

where   = CC'. 

 

To generate yj corresponding to a specified _x_ (say, _x_j), a standardized 

normal deviate, ej, is sampled, multiplied by SIG, and the result added to bo + 

_x_'_b_: 

 

 

     yj = bo + _x_j'_b_ + SIG ej . 
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From the preceding, it is seen that the variance matrix    is not explicitly 

specified.  Instead, it is the coefficient matrix C that is actually specified.  

The matrix   has the value CC'. 

 

The coefficient matrices and values of bo, _b_, SIG, and SIGMA for the various 

test cases are specified in the computer printouts of Appendix B.  The values of 

the corresponding covariance matrices   are also specified in those printouts, 

as part of a larger matrix,  A.  The covariance matrix,  A, specified in the 

printouts includes an additional row and column, which contains the variance and 

covariances of y with each x, i.e., 

 

 

       A = var(y,_x_') 

 

         = var(bo_1_ + _x_'_b_ + _e_, _x_') 

 

             _b_'  _b_ + SIG2      _b_'    

         = 

                _b_                        

 

The normally distributed random numbers were generated by the algorithm  

                12 

     f = SIGMA    ui 

               i=1 

 

where u1,u2,...,u12, are a sequence of independent uniformly distributed random 

numbers.  The number ui was generated by the multiplicative congruential method, 

specified for the 16-bit Radio Shack Model II microprocessor by the algorithm: 

 

     IXtent = IXold (216 + 3) = IXold 259 

 

                IXtent if IXtent    0 

     IXnew  =  

                IXtent + (216-1)+1 = IXtent + 32767+1 

 

                                          if IXtent    0 

 

     ui = IXnew (2-15) = IXnew (.30517578E-4) 

 

     IXold = IXnew 

 

The multiplicative congrential method for generating pseudo-random numbers is 

described in Reference 10. 

 

The rationale for the specification of the test cases is as follows.  For the 

case of a single independent variable (m = 1), the four test cases involved four 

different values of the ratio SIG/SIGMA: .1, .5, 1.0, and 5.  The case with 

SIG/SIGMA = .1 is easiest, since there is a substantial amount of variation in x 

and a small model error term. 

 

For the cases with m greater than one, the value of SIG/SIGMA was set equal to 

.1, and the complexity of the variance matrix   was varied.  For the first 

subcase,   was set equal to the identity matrix, i.e., the x's were orthogonal 

(uncorrelated).  For the second subcase, the coefficient matrix used to generate 

the x's (and hence  ) was specified to correspond to a low-to-moderate degree of 

correlation among the x's.  For the third subcase, the coefficient matrix was 
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specified to produce a moderate-to-high degree of correlation among the x's.  In 

the final subcase, a linear dependency was introduced among the x's: the last x 

was set equal to the sum of the two preceding x's. 

 

The values of the regression coefficients, _b_, were chosen to make the 

estimation difficult.  The correlations among the x's were all positive, and so 

the regression coefficients were specified to be plus ones and minus ones.  This 

caused convergence of the iterative algorithm to be slow, because each time an 

adjustment was made in one direction for a particular coefficient, a reverse 

adjustment would be required on the next iteration for coefficients having the 

opposite sign. 

 

3. _Synthesis of a Candidate Algorithm_ 

 

In order to demonstrate the feasibility of the proposed concept of developing a 

fast estimation algorithm that could be used as an alternative to the classical 

least-squares algorithm, it was proposed to synthesize one or more alternative 

algorithms, and to examine their performance.  The class of algorithms that was 

synthesized in this project are extensions of the Wald and Bartlett estimators, 

extended to the case of more than one independent variable. 

 

The algorithm is iterative.  At the k-th iteration, the residuals, ejk-1, from 

the preceding iteration are regressed on a particular independent variable, xi, 

using either the Wald or Bartlett method: 

 

      ejk-1 = bok + b1kxij + ejk 

 

where bok and b1k are the Wald or Bartlett estimates.  In the regression process 

of determining bok and b1k, of course, the value of ejk is unknown.  Once the 

values of bok and b1k are determined, the vaule of ejk may be computed as 

follows: 

 

     ejk = ejk-1 - bok - b1kxij 

 

The process cycles through all of the x's in order.  That is, the first 

iteration regresses y on x1.  The second iteration regresses the residuals from 

the first regression on x2.  The third iteration regresses the residuals from 

the second regression on x3, and so on.  If there are m independent variables, 

then the (m+1)-st regression begins over again, and regresses the residuals from 

the m-th regression on x1, and so on. 

 

The preceding iterative procedure is conjectured to produce consistent parameter 

estimates of the model parameters (i.e., estimates that converge in probability 

to the true parameter values as the sample size increases).  Determination of 

whether this is true, or of conditions under which it is true, should be 

addressed in Phase II. 

 

In the present study, several modifications of the preceding procedure were 

examined.  For example, a "stepwise" procedure was considered, in which the 

regression at each iteration was performed on the independent variable, xr, 

which resulted in the greatest reduction in the criterion: 

 

     br IQr 

 

where IQr denotes the interquartile range of xr, and br denotes the Wald 

regression coefficient of the residuals at that iteration on xr.  Another 

approach considered was to regress the residuals separately on all x's, and then 
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to adjust all m regression coefficents by a specified fraction ("stepsize") of 

the indicated adjustment.  No modified algorithm was found, however, that 

performed faster than the one specified above. 

 

Both the Wald and Bartlett procedures were applied to the test cases for which m 

= 1, but only the Wald procedure was applied to the other test cases.  The 

iterative procedure described above will be referred to as an "iterative Wald-

Bartlett" estimation method. 

 

E. _Comparison of the Performance of the Candidate Algorithm to the Performance 

of the Classical Least-Squares Algorithm_ 

 

Each of the sixteen test cases was analyzed using both the classical least-

squares (CLS) and the iterative Wald-Bartlett (IWB) algorithms.  The performance 

of each case was determined, using the processing speed and the coefficient of 

determination as the measures of performance, or observing whether the method 

failed catastrophically.  The closeness of the residual standard error to the 

parameter SIG was also noted.  The results of these simulations are described in 

the next section of this report. 

 

 

IV. SIMULATION RESULTS 
 

 

A. _Test Cases Involving a Single Independent Variable_ 

 

The four test cases with m = 1 independent variable were analyzed using both the 

Wald and Bartlett estimates, and the classical least-squares estimator.  In 

general, all cases ran so fast that speed differences could not be reliably 

determined among the methods.  All methods produced parameter estimates close to 

the true values, and all produced similar values for the residual standard error 

and the coefficient of determination.  A summary of the results of the four 

cases with m = 1, and all of the other test cases as well, is presented in 

Figure 2. 

 

B. _Test Cases Involving Three Independent Variables_ 

 

For the test cases with m = 3 independent variables, the data were analyzed with 

both the iterative Wald-Bartlett (IWB) and classical least-squares (CLS) 

methods.  The results are presented in Figure 2.  Both the CLS and IYB methods 

appear to be of comparable speed, in cases in which the CLS method does not 

fail.  The CLS method fails if the correlations among the x's are high, or if 

there is a linear dependency among the x's.  The IWB method succeeds in these 

cases, but does not converge very fast.  The slow convergence is probably due to 

the fact that the regression coefficients were purposely specified to cause slow 

convergence. 

 

C. _Test Cases Involving Six Explanatory Variables_ 

 

The results for the cases involving six explanatory variables are as follows.  

For cases in which the CLS method does not fail, it is somewhat faster than the 

IYB method, for the difficult estimation problems represented by the test cases.  

For cases in which the correlations among the x's is high, the CLS method fails.  

In these cases, the IWB method is slow to converge.  Once again, the slow 



29 
 

convergence is probably due to the "pathological" specification of the 

regression coefficients. 

 

D. _Test Cases Involving Ten Independent Variables_ 

 

The results for the test cases involving ten independent variables were as 

follows.  For cases in which the CLS method succeeded, it is faster than the IWB 

method for the test cases studied.  For the cases in which the correlation among 

the x's is high, the CLS method fails, and the IYB method is slow.  In the worst 

case (case 15), the process was terminated after 1800 seconds.  At that point, 

the model had reached a solution close to the correct solution, but not correct 

-- the residual standard error was 2.03, compared to the true value of 1.0. 

 

In summary, the IYB method appears to be comparable in speed to the CLS method 

for problems with a small number of explanatory variables or low correlations 

among the x's.  For difficult problems (with high correlations among the x's), 

the CLS method fails.  The IYB method converged in all of the difficult cases 

but one. 

 

 

V. CONCLUSIONS AND RECOMMENDATIONS 
 

 

A. _Conclusions_ 

 

This study has demonstrated the feasibility of developing an algorithm for 

estimating the parameters of a linear statistical model and making predictions 

based on the estimated model, that is comparable in speed to the classical 

least-squares method for problems of low to moderate difficulty, and is 

definitely more robust, in the sense that it is less subject to catastrophic 

failure.  The feasibility was established by synthesizing an algorithm -- an 

extension of the estimation procedures of Wald and Bartlett -- which often 

outperformed the classical method. 

 

The availability of a fast, robust estimation procedure would be beneficial to 

both military and nonmilitary applications.  In a military context, there is a 

growing need for faster estimation procedures -- current procedures cannot 

accomplish tracking of large numbers of objects in real-time, or accomplish 

large-scale sensor exploitation in real-time.  Also, embedded-processor 

estimation algorithms are non-interactive (i.e., must perform without human 

intervention), and are potentially subject to catastrophic failure if based on 

the classical least-squares procedure, if highly correlated data are entered 

into the data input stream. 

 

In both military and commercial/industrial applications, there is a requirement 

for "fail-safe" estimation algorithms.  The classical least-squares algorithm 

that is currently in use is not fail-safe.  For problems involving moderate or 

large numbers of variables, computer roundoff errors can ruin the estimates, and 

the user may be totally unaware of the failure.  The danger of this occurrence 

is particularly strong in microcomputers having short word lengths (e.g., 16 bit 

microprocessors), and is a problem even for 32-bit machines.  Furthermore, many 

persons using statistical software packages are not aware that linear 

dependencies in the variables can cause the complete failure of the methods.  

Once again, roundoff errors may obscure the problem, so that the user has no 

reason to believe that the estimation algorithm failed. 
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While the present project has demonstrated the feasibility of developing fast, 

robust algorithms, it has not accomplished the ultimate goal of developing such 

an algorithm.  The algorithm that was sythesized in this project is not 

considered to be a final solution to this problem -- it does not outperform the 

classical least-squares method in every case, and its theoretical properties 

(e.g., convergence, consistency of estimates) are unknown.  Continuation of the 

effort to develop improved (fast, robust) estimators will require substantial 

additional effort.  The present study suggests, however, that the potential for 

success of such an effort is high. 

 

B. _Recommendations_ 

 

It is recommended that a Phase II study be conducted, oriented toward the goal 

of developing improved algorithms for estimation, prediction and control.  It is 

further recommended that the Phase II effort should address the following tasks. 

 

     1. Extension of the results of the Phase I study, to 

        include analysis of a wider range of test cases,  

        and measurement of the full set of performance 

        measures identified in this study. 

 

     2. Development of a broader class of algorithms,  

        additional to the iterative Wald-Bartlett method 

        developed in this Phase I effort. 

 

     3. Extension of the algorithm to consider estimation 

        problems additional to the multiple linear  

        regression problem considered in the Phase I effort. 

        Consideration should be given to developing fast, 

        robust methods for the full range of problems 

        currently addressed by least-squares methods,  

        such as multivariate analysis of variance and  

        time series analysis procedures (currently done 

        by Box-Jenkins, Kalman filter, and state-space 

        methods). 

 

     4. Analyze the theoretical numerical and statistical 

        properties of candidate algorithms, such as  

        convergence conditions and consistency. 

 

If successful, it is expected that there would be a substantial military and 

non-military demand for a statistical estimation computer program package based 

on the improved methods.  With respect to military applications, such methods 

offer the potential for fast, fail-safe processing of tracking and sensor 

exploitation data.  With respect to non-military applications, the methods are 

much more "user-friendly" than the least-squares method, in that the user would 

be protected from catastrophic failures, and would not need to understand matrix 

algebra concepts such as linear dependencies, singularities, and numerical 

stability problems in matrix inversion, to be assured of successful application 

of the procedures.  In view of the large number of persons involved in data 

analysis, and the growing use of microcomputers, the development of such methods 

is considered to be a very significant contribution to the field of data 

analysis. 

 

The determination that the iterative Wald-Bartlett method avoided the 

catastrophic failure problem of the classical least-squares method was 
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serendipitously discovered during the course of the Phase I investigation.  

Since this property of the algorithm is judged to be probably more important 

than speed in many applications, it is recommended that the title of the Phase 

II study be changed from "Fast Algorithms for Estimation, Prediction and 

Control," to "Improved Algorithms for Estimation, Prediction and Control." 

 

Reduction of the danger of obtaining wrong answers from regression analyses 

represents an area of potentially great benefit, to a wide class of data 

analysts.  The original concept of this study was to develop fast algorithms, 

primarily for real-time applications such as tracking, sensor exploitation, or 

industrial process control.  Those applications, while important, concern 

relatively few data analysts.  The discovery of the robustness of the iterative 

Wald-Bartlett algorithm, however, could have substantial impact for a wide class 

of data analysts.  For example, a typical logistics application involves the 

determination of parametric cost estimating relationships.  These relationships 

are estimated by linear regression analysis.  Since the models developed are 

empirical in nature, they involve the analysis of a large number of cost-related 

variables.  The presence of a linear dependency in the data, or the occurrence 

of a roundoff-error-caused matrix inversion failure caused by high correlation 

among some of the explanatory variables, could produce incorrect results.  The 

availability of "fail-safe" algorithms would benefit this and many other similar 

applications.  In view of the substantial amount of funds expended by the Office 

of Naval Research on parametric cost analysis and other data analysis, the 

benefits of improved estimation methods would be substantial. 

 


