

 1

TEST REPORT

FOR THE

SCENARIST
TM

AUTOMATED SCENARIO GENERATION SYSTEM

PROJECT TITLE: RESEARCH IN ARTIFICIAL

INTELLIGENCE FOR NON-COMMUNICATIONS

ELECTRONIC WARFARE SYSTEMS

Contract No. DAAB07-89-C-P017

April 30, 1991

Prepared for:

US ARMY COMMUNICATIONS-ELECTRONICS COMMAND

Fort Monmouth, New Jersey

Prepared by:

VISTA RESEARCH CORPORATION

5055 E. Broadway Boulevard, Suite D205

Tucson, Arizona 85711

(602)790-0500

Copyright (C) 1991 Vista Research Corporation

 2

Contents
Foreword ... 3

1.0. Introduction .. 4

2.0. Applicable Documents ... 4

3.0. Proposed Test Procedures .. 6

4.0. Test Results .. 7

5.0. Summary .. 30

Appendix A. Scenarist Test Deployment .. 30

Appendix B. Sample Output File .. 38

 3

 Foreword

This report was prepared by the staff of Vista Research Corporation, under

Contract No. DAAB07-89-C-P017 to the US Army Communications-Electronics

Command. Project staff included Dr. J. George Caldwell, Principal

Investigator, Mr. William N. Goodhue, Ms. Sharon K. Hoting, Dr. William

O. Rasmussen, Mr. Eric Weiss, and Mr. Fletcher Aleong. Government

monitoring of the project was provided by Dr. Frank Elmer, Head of the

Advanced Concepts Division of the Center for Electronic

Warfare/Reconnaissance, Surveillance and Target Acquisition (EW/RSTA).

The CECOM Project Manager is Dr. Frank Elmer.

Special thanks is extended to Captain John Aloisio of the US Army

Intelligence Center and School for providing information about the

TRAILBLAZER system. This information was used to define the TRAILBLAZER

units and organization for input to the Scenarist, and to define the rules

governing the placement of the TRAILBLAZER units.

 4

1.0. Introduction

1.1. Purpose of Document

This document describes the results of a test of the Scenarist automated

scenario-generation system. The test was conducted in accordance with the

test plan described in the report, Test Plan for the Scenarist Automated

Scenario Generation System (Vista Research Corporation, February 28,

1991).

1.2. System Purpose

The Scenarist automated scenario generation system is a workstation-based

aid for use by military scientists to develop tactical military scenarios.

As used in this report, a "tactical military scenario" is a specification

of the initial positions, activities, and planned movements of tactical

military units. The specification may be at various levels of detail,

ranging from a specification of the positions of high-echelon tactical

units (e.g., divisions, brigades, battalions) to the positions and

activities of low-level units (e.g., companies) or individual platforms

or items of equipment (e.g., vehicles and radars).

The immediate application of the Scenarist is to develop laydowns of

noncommunications equipment for use by the US Army

Communications-Electronics Command (CECOM) in its analysis of electronic

warfare systems and concepts. Later applications may include development

of scenarios for use in a wide range of military applications, including

force planning; research, development, test and evaluation; operational

planning and evaluation; and training and education.

2.0. Applicable Documents

2.1. Government Documents

The following documents of the exact issue shown form a part of this

specification to the extent specified herein. In the event of conflict

between the documents referenced herein and the contents of this

specification, the contents of this specification shall be considered a

superseding requirement.

STANDARDS:

DoD-STD-2167A Military Standard: Defense System

 Software Development

OTHER PUBLICATIONS:

 5

31 August l989 Statement of Work (SOW) for

 contract, Research in Artificial

Intelligence (AI) for

Non-Communications Electronic

Warfare Systems, CECOM contract

no. DAAB07-89-C-P017

29 March 1990 TRAILBLAZER Operations (FM 34-10-3),

 Headquarters,

Department of the Army, Washington, DC

1 November 1989 TRAILBLAZER User's Guide, Volume I,

Operators, Project Manager Signals Warfare,

ATTN: SFAE-IEW-SG, Vint Hill Farms Station,

Warrenton, VA

1 November 1989 TRAILBLAZER User's Guide, Volume II,

Supervisors, Project Manager Signals Warfare,

ATTN: SFAE-IEW-SG, Vint Hill Farms Station,

Warrenton, VA

1 November 1989 TRAILBLAZER User's Guide, Volume III,

Commanders and Staffs, Project Manager Signals

Warfare, ATTN: SFAE-IEW-SG, Vint Hill Farms

Station, Warrenton, VA

1 November 1989 TRAILBLAZER User's Guide, Volume IV,

Interoperability, Project Manager Signals

Warfare, ATTN: SFAE-IEW-SG, Vint Hill Farms

Station, Warrenton, VA

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this

specification to the extent specified herein. In the event of conflict

between the documents referenced herein and the contents of this

specification, the contents of this specification shall be considered a

superseding requirement.

OTHER PUBLICATIONS:

May 31, 1990 Preliminary System Design (System/

Segment Design Document) for the

Scenarist Automated Scenario Generation

System, Vista Research Corporation,

Tucson, Arizona

February 28, 1990 Test Plan for the Scenarist

 6

Automated Scenario Generation System,

Vista Research Corporation, Tucson,

Arizona

3.0. Proposed Test Procedures

This section identifies the procedures that were proposed in the test plan

document to be executed in the test. The paragraphs that follow (under

the heading "Test Procedures") were extracted from Section 9.0 of the test

plan document (with correction of the TRAILBLAZER echelon terminology, and

reference to TRAILBLAZER Master Control Stations (MCSs) as "items").

Test Procedures

1. Input Map Data. Digital map data have already been extracted from the

GRASS sample map data files describing the area near Spearfish, SD. These

data are stored on floppy diskettes. We will create from these files a

set of maps of varying resolution. There are two types of maps used by

the Scenarist -- a terrain-type map (that identifies lakes, urban areas,

etc.) and an elevation map. We will then create a Scenarist "project file"

naming the lowest-resolution maps (i.e., the lowest-resolution

terrain-type map and the lowest-resolution elevation map). The Scenarist

run will begin using these maps.

2. Define a Division-Level Military Unit and Input It. We propose to define

a division, specifying all of the organizational detail necessary to define

the location of TRAILBLAZER units. We will first define the division as

a "generic" division, and then "copy" it to a specific division. The

specific division will be given a location, an objective, and an avenue

of approach to the objective. The threat will be characterized simply in

terms of a Forward Edge of the Battle Area (FEBA).

The generic division will contain the TRAILBLAZER units and equipment in

"canonical" locations, i.e., the locations will be specified without regard

to terrain, mission, or threat.

That the Scenarist maintains the organizational structure of the defined

unit will be demonstrated by requesting the Scenarist to display a single

TRAILBLAZER unit.

3. Specify Placement Rules and Input Them. We obtained five documents from

the US Army Intelligence Center and School that describe the tactical

doctrine for employing TRAILBLAZER units and equipment. We will analyze

these documents and develop a set of rules for placing this system in the

division. The rules may or may not require the coding of additional

functions to define the factors in terms of which the rules are defined.

If factors are needed in addition to those that already exist in the current

 7

Scenarist prototype (terrain type, elevation, distance to FEBA, horizon

angle), functions will be coded to compute those factors.

4. Apply Rules to Reposition Items. The Scenarist will be executed to apply

the rules to reposition the TRAILBLAZER units and platforms/equipment in

a fashion that takes into account terrain features, mission, and threat.

5. Output the Item Locations. The locations and identification of the

TRAILBLAZER units and platforms/equipment will be written to a file,

printed out in hardcopy, and written to a floppy diskette.

6. Demonstrate User-Positioning of an Item. One of the TRAILBLAZER units

will be moved from its current position. The rules will be re-executed

to reposition all of the TRAILBLAZER units in the division. It will be

noted that the user-specified position will be unchanged.

7. Relocate the Division. The division will be moved to another location

on the battlefield. It will be observed that the locations of all

subordinate units and equipment are automatically redetermined.

4.0. Test Results

This section presents a detailed description of the procedures performed

in the test and the test results. A subsection is presented for each of

the test procedures identified in the preceding section.

4.1. Input Map Data

The map data set that was used for the test was the map data provided as

a sample data set with the US Army's GRASS geographic information system.

The data set includes a variety of attributes for a 14 kilometer by 19

kilometer area near Spearfish, South Dakota. The attributes of interest

to this application were cellular data on terrain type, elevation, and

roads, and vector data on roads. The resolution of the terrain-type and

elevation data was 30 meters (i.e., an attribute value was available for

each 30 meter by 30 meter area, or "cell"), and the resolution of the road

data was 100 meters.

The Scenarist operates on a sequence of maps of varying resolution, starting

from low resolution (e.g., each cell is one or two kilometers wide) to high

resolution (i.e., each cell is of the highest resolution available, in this

case either 30 meters or 100 meters).

The process of preparing the map data files used by the Scenarist involved

three basic steps:

1. Execution of the program WINL7 to extract a "linear" road file from

the GRASS data set. This file contains vector representations of the

roads. It is not used for analysis purposes, but simply as input to

a background map to make it easier for the analyst to orient himself.

 8

2. Execution of the program WIN7 to extract three cellular maps: a

terrain-type map, an elevation map, and a road map. These maps are

used by the Scenarist in its unit repositioning algorithm.

3. Use of the program s03xcomp to prepare a series of terrain-type,

elevation, and road files of lower and lower resolution. Each

successive lower-resolution file is obtained by aggregating square

blocks of neighboring cells of size two or three cells on a side. This

aggregation process is continued until a set of map files is obtained

that can cover the entire area of interest with cellular maps having

fewer than 32 cells on a side.

In order for the Scenarist to use map data, it must be in a specific format.

The exact procedures used to prepare map files for input to the Scenarist

will vary from application to application, depending on the source of the

mapping data. The programs WINL7 and WIN7 are designed exclusively for

producing Scenarist-format map files from GRASS map files. The user would

have to develop other programs to produce Scenarist map files from other

sources.

For the GRASS sample data set, the process of producing the Scenarist map

files was as follows.

1. Extract Binary Map Files from GRASS System. The GRASS system was used

to output binary data files containing cellular and vector data. A total

of 12 cellular and two vector data files were extracted. The cellular data

files were named: road (roads), quad (quadrant), rail (railroads), soil

(soils), vege (vegetation), land (landuse), geol (geology), strm

(streams), elev (elevation), slop (slope), tern (terrain), and aspc

(aspect). The vector data files were named strml (streams) and roadl

(roads). The terrain-type, elevation, and road cellular data files were

the files named tern, elev, and road, respectively. The road vector data

file was the file named roadl.

2. Use the Program WINL7 to Produce a Vector Road File. The program WINL7

was executed to produce a vector road file in Scenarist format from the

vector road file in GRASS format. In running the program, the user first

specifies the "data topic," in this case, "Road." The program indicates

the Universal Transverse Mercator (UTM) coordinate range of the data

(east-west and north-south) and requests the location of the top left

(upper-left-hand) corner of the map. The extreme northern and western

coordinates were selected (590010 and 4928000). The program also requests

the width of the block of cells (called a "window") to extract from the

GRASS file. This window must be square. A value of 25,000 meters was

input. The program requests the name of the output file (geol02.fil). The

program then produces a vector road file that is in the Scenarist format,

except for the header, which is not used by the Scenarist. The "edlin"

editing program was used to delete this header, and the resulting file

(still called geol02.fil) was ready for use. (The index "02" is used

throughout this test to refer to the fact that this is the second test

problem analyzed by the Scenarist.)

 9

3. Use the Program WIN7 to Produce Three High-Resolution Cellular Map Files:

a Terrain-Type File, an Elevation File, and a Road File. The program WIN7

was used to extract terrain-type, elevation, and road files from the GRASS

data. The GRASS data are stored in rectangular matrices (arrays). The

array sizes are 466 rows and 634 columns for terrain type; 466 rows and

633 columns for elevation; and 160 columns and 220 rows for roads. The

cell width is 30 meters for terrain type; 30 meters for elevation; and 100

meters for roads. The WIN7 program requests the user to specify the

northwest corner and width (in meters) of the "window" (square block) of

cells to be selected from the GRASS data set. As above, the extreme

northwest point of the data set was selected, and the width of 25,000 meters

was specified. The files were named geod0201.fil (terrain-type),

geoc0201.fil (elevation) and roadtemp (roads). (Note: Use of the prefix

geod for terrain type and geoc for elevation stems from the fact that all

discrete-variable (categorical) cellular map data are stored in a

discrete-variable matrix (geodisc), and all continuous-variable data are

stored in a continuous-variable matrix (geocont). In the early versions

of the Scenarist, terrain type and elevation were the only cellular map

types. The letters d and c are still used for terrain type and elevation,

even though there is now more than one discrete cellular map type (i.e.,

terrain type (file prefix geod) and roads (file prefix geor).)

Note that the program WIN7 can select only square windows, and that the

window must fall wholly within the coordinate limits. Since the GRASS data

set was not square, it was not possible (under these conditions) to select

a square window that included all of the data. Of the 466 (rows) x 634

(columns) terrain-type matrix, WIN7 selected a square matrix of size 465

x 465; of the 466 x 633 elevation matrix, WIN7 selected a 465 x 465 matrix;

of the 160 x 220 road matrix, WIN7 selected a 159 x 159 matrix. In a future

application, it is recommended that the WIN7 program be modified to allow

the window to be an arbitrary rectangle.

As noted, the three map files were named geod0201.fil (terrain type),

geoc0201.fil (elevation), and roadtemp (roads). The terrain-type and

elevation files were each of width 465 cells, with a cellwidth of 30 meters.

The road file was of width 159 cells, 100 meters wide. The terrain-type

and elevation files were satisfactory, but there was a problem with the

road file. This data file had evidently been miscoded, so that the value

"0," which was supposed to signify "no data," obviously meant "no road."

The program s03xcomp was used to recode the data as follows:

1. The codes 1 (primary_route_undivided), 2

(road_or_street_class_3)), 3 (road_or_street_class_4), and 5

(cloverleaf_or_interchange) were recoded as 2 (road present);

2. The code 0 (no data) was recoded as 1 (no_road)

3. The code 0 was reserved for "no data," but there were no such cells.

The input requested by s03xcomp is: (1) compression factor: 1; (2) number

of attributes to check for: 4; (3) attribute numbers: 1,2,3,5.

The input data file for s03xcomp was roadtemp. The output data file was

named geor0201.fil. The program s03xcomp does not change legends, so the

 10

legend for geor0201.fil was the same as for roadtemp. The program "edlin"

was used to change the legend to read:

1: no_data

2: no_road

3: road.

The edlin line editor was also used to change the file name on line 1 of

the file (from roadtemp) to geor0201.fil).

4. Use the Program s03xcomp to Produce a Series of Lower-Resolution Cellular

Map Files. As noted above, the Scenarist operates on a sequence of map

files, from low resolution to high resolution. The next step is to create

a sequence of lower resolution files from the three high-resolution files

obtained in the previous step. The program s03xcomp was designed for this

purpose: it accepts as input a cellular map file in Scenarist format and

produces a lower-resolution map file. It does this by aggregating

(combining) neighboring blocks of cells. Specifically, the user specifies

a "compression factor," which is the width of the block to be aggregated.

The program then performs an aggregation in any of three ways:

1. For continuous data, it computes a mean

2. For discrete data it computes either:

a. the mode; or

b. an indicator variable having the value 2

if any of a specified set of attribute values

is present, and 1 if none of the values is

present.

The user may specify whether the value "0" signifies "no data." If 0

specifies "no data," and any of the cells of a block has the value 0, then

the mean and mode also have the value 0 (i.e., "no data"). In this case,

the indicator value is 0 if none of the specified set of values is present,

but it is 2 if any of the specified set of values is present.

The first run of s03xcomp was used to compress the file geod0201.fil by

a factor of 3. The input was as follows:

geod0201.fil (name of high-resolution input file

having 465 columns, 30 m resolution)

0 (to compress discrete data)

3 (compression factor)

0 (signifies "no data")

0 (compute mode)

geod0202.fil (name of lower-resolution output file

having 155 columns, 90 m resolution)

The additional runs of s03xcomp made to produce even lower-resolution

terrain-type files are summarized below:

Input: geod0202.fil,0,2,0,0; output geod0203.fil (77 columns, 180 m

resolution)

Input: geod0203.fil,0,2,0,0; output geod0204.fil (38

columns, 360 m resolution)

Input: geod0204.fil,0,2,0,0; output geod0205.fil (19

 11

columns, 720 m resolution)

input: geod0205.fil,0,2,0,0; output geod0206.fil (9

columns, 1440 m resolution)

Input: geoc0201.fil (465 columns, 30 m resolution), 0,3,0,0;

output geoc0202.fil (155 columns, 90 m resolution)

Input: geoc0202.fil,0,2,0,0; output geoc0203.fil (77

columns, 180 m resolution)

Input: geoc0203.fil,0,2,0,0; output geoc0204.fil (38

columns, 360 m resolution)

Input: geoc0204.fil,0,2,0,0; output geoc0205.fil (19

columns, 720 m resolution)

Input: geoc0205.fil,0,2,0,0; output geoc0206.fil (9

columns, 1440 m resolution)

Input: geor0201.fil (159 columns, 100 m resolution), 0,2,0,1,1,2;

output geor0202.fil (79 columns, 200 m

resolution)

Input: geor0202.fil,0,2,0,1,1,2; output geor0203.fil (39

columns, 400 m resolution)

Input: geor0203.fil,0,2,0,1,1,2; output geor0204.fil (19

columns, 800 m resolution);

Input: geor0204.fil,0,2,0,1,1,2; output geor0205.fil (9

columns, 1600 m resolution);

Note that the process of aggregation stops when the entire area of interest

is covered by a map of size 32 cells by 32 cells or less. The 9-cell by

9-cell maps are the highest-resolution maps that do this -- the product

of 32 cells of width 1440 m is 46,080 m, or 46 km. (The 19-cell by 19-cell

maps cover only about half of the area required to place a division -- 32

cells x 720 m = 23 km).

The names of the map cells are entered (using the edlin line editor program)

into the "project files." A total of six project files was set up:

proj0201.fil uses geod0201.fil,geoc0201.fil,geor0201.fil

proj0202.fil uses geod0202.fil,geoc0202.fil,geor0201.fil

proj0203.fil uses geod0203.fil,geoc0203.fil,geor0202.fil

proj0204.fil uses geod0204.fil,geoc0204.fil,geor0203.fil

proj0205.fil uses geod0205.fil,geoc0205.fil,geor0204.fil

proj0206.fil uses geod0206.fil,geoc0206.fil,goer0205.fil

Note that a project file uses files of similar resolution, if they are

available. Since the highest resolution of the road file is 100 m, the

map resolutions in the project file proj0201.fil vary (i.e., the maximum

resolution is 30 m for terrain-type and elevation, but 100 m for roads).

In running the Scenarist, the low-resolution files are used first; that

is, proj0206.fil will be the first project file accessed, and proj0201.fil

will be the last.

4.2. Define a Division-Level Military Unit and Input It

 12

From the US Army Intelligence Center and School, we obtained a number of

documents describing the organizational structure and tactical doctrine

for placing TRAILBLAZER units on the battlefield (see references under the

heading "Applicable Documents," above). Based on a review of these

documents, we developed a specification of the organizational structure

of a division and its subordinate units in sufficient detail to allow the

development of placement rules for TRAILBLAZER units.

In summary, the organizational structure, and the subordinate units

explicitly represented, is as follows:

1. Division contains two front-line brigades and a military

intelligence (MI) battalion. Represent the division headquarters

company explicitly.

2. MI battalion contains an electronic warfare (EW) company.

Represent the battalion headquarters company explicitly.

3. EW company contains a SIGINT processing platoon (SPP). Represent

the EW headquarters platoon explicitly.

4. SPP contains a TRAILBLAZER (TB) section and a TEAMPACK (TP)

section.

5. TB section contains five TRAILBLAZER master control stations

(MCSs), represented in the Scenarist echelon structure as

squad/teams.

6. TP section contains three TEAMPACK teams, represented in the

Scenarist echelon structure as squad/teams.

In the above organizational structure representation, a subordinate unit

was included if it or one of its subordinate units contained a TRAILBLAZER

unit, or if the TRAILBLAZER positioning rules might refer to the location

of it or one of its subordinate units.

During the process of defining the organizational structure, it is

necessary to specify "canonical" positions of all units and equipment. A

canonical position (or configuration, or laydown) is a placement of the

units and equipment in a fashion that is consistent with military tactical

doctrine in the absence of any information about terrain, mission, or

threat. According to the documents, the five TRAILBLAZER master control

stations (MCSs) should be arranged in a "W" formation in the forward area

of operations of the division (i.e., in the maneuver brigade areas), with

the frontal MCSs about 5-10 km from the forward line of own troops (FLOT)

and the rear ones 10-15 km back of the forward ones. Also, a distance of

15 km should be maintained between the MCSs.

The locations of all subordinate units are specified in standardized

coordinates, relative to the corners of the parent unit (corners at (0,0),

(1,0), (1,1), and (0,1)). In terms of these standardized coordinates, the

 13

TRAILBLAZER MCS locations are (.1,.1), (.5,.1) and (.9,.1) for the frontal

MCSs and (.3,.3), (.7,.3) for the rear MCSs.

Apart from the TRAILBLAZER units, other aspects of the canonical laydown

are as follows. The division main and MI battalion headquarters companies

were placed in the division rear (standardized coordinates (.4,.8)). The

EW company headquarters and the SIGINT Processing Platoon headquarters were

placed near each other, near the rear of the first brigade (standardized

coordinates (.25,.35) and (.2,.3)). The TRAILBLAZER and TEAMPACK section

symbol location points were placed at (.2,.3) and (.3,.3). The TEAMPACK

teams were placed along the division front, at (.1,.05), (.4,.05), and

(.6,.05).

Because the placement rules for TRAILBLAZER are concerned with the MCSs'

coverage of the target area, an "objective" was defined for the TRAILBLAZER

section (and for the TEAMPACK section, as well). The objective is

specified in terms of a "bounding rectangle," in real coordinates. The

objective was specified as a division-sized area in front of the BLUE

division.

Appendix A contains a complete description of the division organizational

structure, in terms of the input data required by the Scenarist program

to create a file containing all of the unit organizational data. The

specification of the TRAILBLAZER input data starts at section B of the

deployment description. (Section A of the deployment description presents

the input for a "Beqaa Valley" scenario that was used in the initial testing

of the Scenarist. The TRAILBLAZER units were simply added to the Beqaa

Valley unit file to avoid the proliferation of unit data files. The Beqaa

Valley specific unit file is called spec01.fil -- the "01" signifying

problem 01. The Spearfish/TRAILBLAZER specific unit file is called

spec02.fil -- the "02" signifying problem 02. File spec02.fil was formed

by copying file spec01.fil, changing the locations of the units to place

them on the Spearfish map, and adding the TRAILBLAZER units.)

Note that in defining the TRAILBLAZER units, the specification of the "type"

of a unit is constrained by whatever types have already been included in

the unit file in the Beqaa Valley example. For example, the generic

division defined in the Beqaa Valley example was specified to be of type

1. Both the specific BLUE and RED divisions of the Beqaa Valley example

were defined to be of that type. That division was defined without any

mention of TRAILBLAZER units, and so a new division had to be defined for

this TRAILBLAZER test. The type of the new division was specified as "2."

Similarly, it was not desired to use the same organizational structure for

the brigades in this test, so the brigades were specified to be of type

"2" to distinguish them from the type 1 brigades of the Beqaa Valley example.

The unit type designator determines what symbols and labels are used for

a unit. The unit number designator is part of the unit's code, and is used

in accessing the unit (by code), during Scenarist processing. No two units

may have the same code, or else the Scenarist would only access the first

 14

such one in the file. The unit's number is arbitrary. It does not have

to begin with 1, or be in sequence -- all that is necessary is that no two

units have the same code. It is recommended for simplicity, however, that

the subordinate units of the same type within a unit be numbered serially,

beginning with 1. The unit's type must be an integer between 1 and 10

(because the type is used as the index of an array of size 10). The unit's

idno (and parent unit's idno) may be any number of the user's choosing (e.g.,

a familiar numerical designator). It may be used by the user in selecting

units for display, but is not used in any way by the Scenarist. In the

deployment of Appendix A, the concatenation of side, echelon, and number

was used as the idno.

The "type" of a unit is a characteristic that is independent of its parent

unit. On the other hand, the "number" of a unit is with reference to its

parent unit. That is, if two sections are of the same type, they are, quite

literally, the same type of unit, regardless of what parent units they

belong to.

Since no MI battalions, EW companies, or SIGINT processing platoons had

previously been defined, these units were assigned types "1."

In defining the division and its subordinate units, it is necessary to

specify the number of subordinate units of each geographic type (e.g., the

number, NALLAREA, of "all-area" subordinate units), and the values of

certain positional parameters, which vary by geographic type. These

parameter values specify the canonical position of a subordinate unit --

the position suggested by tactical doctrine in the absence of any

information about terrain features, mission, or threat.

The geographic types and positions specified in the Appendix A deployment

are consistent with the information provided in the TRAILBLAZER documents

referenced above, with one major exception. This exception arose from the

fact that the area covered by the Spearfish, SD, map (about 14 km square)

was quite small relative to the usual size of a division. For a division

width of 30-50 km, only one or two MCSs would appear on the map. The problem

with this situation is that some of the rules for positioning of TRAILBLAZER

units concern interrelationships among the units (e.g., line-of-sight),

and we were concerned that the test would not be very meaningful if only

two units fell on the map. For this reason, we decided to place the division

in a 20 km (front) x 22 km (rear) area in such a way that three MCSs fell

on the map area.

A problem that arises with compressing the division size is that one of

the guidelines for placing the MCSs is that there should be a separation

of about 15 km between the MCSs. We decided that the purpose of the test

could still be satisfied if we simply scaled the division down as described

below, and dropped the requirement that the MCSs be separated by 15 km.

Instead, we replaced this guideline with the requirement that, for the

scaled-down example, the MCSs must be separated by only 5 km.

 15

The preceding discussion relates to rules for determining the canonical

laydown of the TRAILBLAZER units -- rules that do not account for terrain,

mission, or threat. Rules that do account for terrain, mission, and threat

are discussed in the following subsection.

At the time when the test plan was being written, it was mistakenly believed

that the TRAILBLAZER stations were part of a "TRAILBLAZER platoon," and

it was intended to represent the stations as equipment in these platoons.

After reviewing the TRAILBLAZER documents, however, it was realized that

the stations were included in a TRAILBLAZER section, and that the stations

were considered to be squads or teams. That is how they have been defined

in Appendix A.

The data presented in Appendix were input into the Scenarist program using

the "Define Unit" and "Copy Unit" functions of the "Units" menu. For each

type of unit needed, the Define Unit function was used to create a generic

unit of that type (and enter it in file genu02.fil). Then, the defined

generic unit was copied into the specific unit file (spec02.fil), adding

whatever additional specific features were desired (e.g., unit corner

locations, objectives). The files genu02.fil and spec02.fil were

specified in the project files, proj02xx.fil (where "xx" signifies

01,02,...,06). The project files will be described in detail later, in

the section on the test runs.

As part of the test, it was necessary to define labels and symbols for the

units used in the TRAILBLAZER problem. The symbols are coded (in C) in

the function _symbol. The symbol number (specified as a "case" in _symbol)

is entered into the appropriate row (unit echelon) and column (unit type)

of the matrix stored in the file symb01.fil.

During the conduct of the TRAILBLAZER test, it was realized that the

organization of the "symbol" file (symb01.fil, which contains both unit

symbols and labels) was poor. The numbering of the symbols (i.e., the case

number in _symbol) bears no relationship to echelon (i.e., the row in

symb01.fil). This fact unnecessarily complicates the process of defining

symbols and coding them (in the function _symbol). It would be

substantially less confusing if the cases in _symbol were in echelon order.

Also, it would be very desirable to have "default" symbols for each echelon

level. Currently, arbitrary case numbers are entered into rows and columns

of symb01.fil for which no symbol has been defined in _symbol. This could

be very confusing to a new Scenarist user. Since the test revealed several

areas in which the Scenarist design had to be modified (e.g., incorporation

of a capability to accept road cell maps; incorporation of a capability

to handle global constraints; incorporation of a capability to reposition

a map such that its center falls in the center of a unit), no effort was

expended on this "clean-up" effort. It is recommended as a future

development effort, however, since it would enhance the

"user-friendliness" of the system.

4.3. Specify Placement Rules and Input Them

 16

In addition to providing information about the organization and canonical

placement of TRAILBLAZER units, the TRAILBLAZER documents were reviewed

to determine the ways in which the positions of TRAILBLAZER units would

be modified to take into account terrain, mission, and threat. The

following rules were extracted from these documents:

1. Accessibility: In order for a TRAILBLAZER MCS to have access to a

location, the gradient to that location cannot exceed 30 degrees.

2. Separation: The TRAILBLAZER MCSs should be separated by a distance of

at least 5 km. (Note: TRAILBLAZER documents specify 15 km. The 15 km was

reduced to 5 km for the reasons discussed above.)

3. Line-of-Sight betweens MCSs: There should be line-of-sight from each

MCS to at least two other MCSs.

4. Line-of-Sight to Technical Control Analysis Center (SIGINT Processing

Platoon (SPP)): There should be line-of-sight from at least two MCSs to

the SPP.

5. Line-of-Sight to Target Area: The MCSs should be positioned so that it

is possible to provide good coverage of high-payoff targets.

6. Freedom from Obstacles: The MCSs should have freedom from obstacles that

may interfere with coverage (550 m from bodies of water, 1.5 km from cliffs,

10-50 km from mountains).

7. Deployment in Forward Area of Operations: The MCSs should be deployed

in the forward area of the division's operations, i.e., within the maneuver

brigade areas.

8. Antenna Position: The antenna has to be near the tree line.

9. Distance from FLOT: The distance from an MCS to the FLOT should not be

less than 5 km. (Note: this requirement was reduced to 2 km because of the

down-scaling of the division.)

10. Distance from Rear Area: The MCSs should be located in the forward area

of operations of the division, i.e., in the area occupied by the two maneuver

brigades in the division front.

The above rules were derived from the TRAILBLAZER documents, without regard

to the structure of the Scenarist. In the Scenarist, not all of the factors

(concepts) mentioned above are considered, and some factors are implemented

(defined, quantified) in a fashion that differs from the implementation

of the documentation. For example, the Scenarist has not been set up to

include data on trees (although it could be modified to do so in the future,

if this were considered desirable and the data were available).

In order for a factor to be used in a rule, it must be defined in terms

of variables present in the Scenarist, and its value computed. The

computation of the factor values is done in the Scenarist in C-language

functions. For the TRAILBLAZER application, some factors were already

available from the earlier development of the Scenarist (terrain type,

elevation), but it was necessary to define and implement several new

factors. The following additional C functions were defined to compute

factors needed for TRAILBLAZER placement rules:

1. _accessibility: This function computes the accessibility of a unit grid

cell by a TRAILBLAZER MCS. (The unit is divided into a grid of cells; the

 17

width of the gridcell is the same as the width of the elevation map cell.)

A cell is considered to be accessible if:

1. It contains a road; or

2. Its terrain type is "plains" and the slope from the neighboring

cell toward the rear of the division is less than 30 degrees and that

neighboring cell is accessible.

The function _accessibility is executed once (for each processing of the

repositioning rules), to create an accessibility matrix that specifies the

accessibility for every cell of the unit. During the processing of the

rules, the accessibility of a unit grid cell is determined simply by

accessing the appropriate row and column of the accessibility matrix.

Note that in order to compute accessibility, it is necessary to know whether

a map cell contains a road. In the version of the Scenarist that existed

prior to the TRAILBLAZER test, the only cellular data that were input to

the Scenarist were terrain type and elevation. During the course of the

TRAILBLAZER test, the Scenarist was modified to accept road cellular data.

(Vector (linear) road data were previously input to the Scenarist and used

in the creation of a vector map. The Scenarist was not designed, however,

to utilize the vector road data. This approach is a standard one in

geographic information systems -- use vector data for maps, but cellular

data for analysis.)

The values returned by _accessibility are 0 (no data), 1 (not accessible)

or 2 (accessible).

2. _LOS: This function determines whether a line-of-sight (LOS) condition

exists between two specified points (input parameters).

The values returned by _LOS are 0 (no data), 1 (no LOS), or 2 (LOS exists).

3. _lostotarget: This function determines whether satisfactory

line-of-sight conditions exist between a TRAILBLAZER MCS and its target

area. The criterion used for "satisfactory line-of-sight conditions

between MCS and its target area" is that satisfactory LOS conditions exist

if LOS exists from the MCS to at least two of five equally spaced points

along the division front.

We considered implementing an alternative criterion for satisfactory LOS

conditions, viz., LOS exists between the MCS and at least two of five equally

spaced points along the nearest side of the bounding rectangle of the

objective defined for the TRAILBLAZER unit. Implementation of this

criterion was rejected, however, because of the amount of effort that would

have been required to implement it. The problem that exists in

implementing it is that the MCS locations are in standardized (unit)

coordinates, and the objective bounding rectangle corners are specified

in real (map) coordinates. It would hence have been necessary to develop

a function to convert real coordinates to standard coordinates (the

function _transfstdtoreal performs the inverse transformation). While

this could have been done without much trouble, it was considered not worth

 18

the trouble, since the adopted criterion was considered adequate, was

easier to implement (since no coordinate transformation from real to

standard coordinates was required), and would involve less computation.

This point merits some additional discussion, since it will arise again

in future Scenarist applications. The rationale for selecting one method

over another is not just to save programming and testing time; program

running time must also be considered. In the present case, the rejected

alternative may possess an advantage over the selected alternative on

theoretical grounds (i.e., its "face validity" is greater, since it relates

to a target area rather than the division front), but it has a disadvantage

on practical grounds (i.e., longer computer running times). Since either

criterion was considered adequate but the _lostotarget function would be

called many times, the running-time performance was given heavier weight

and the adopted criterion was considered superior, overall, to the rejected

alternative.

The function _lostotarget returns three values: 0 (no data), 1

(unsatisfactory LOS from MCS to target area), or 2 (satisfactory LOS from

MCS to target area).

4. _lostootherunits: This function determines whether satisfactory LOS

conditions exist between a TRAILBLAZER MCS and the other MCSs. The

criterion for assessing whether satisfactory LOS conditions exist is the

following: satisfactory LOS conditions are considered to exist if a LOS

condition exists from the MCS to at least two of the four other MCSs.

This function returns three values: 0 (no data), 1 (unsatisfactory LOS from

MCS to other MCSs), or 2 (satisfactory LOS from MCS to other MCSs).

5. _lostoheadquarters: This function determines whether satisfactory LOS

conditions exist between the set of five TRAILBLAZER MCSs and the SIGINT

Processing Platoon (SPP). "Satisfactory LOS conditions" are considered

to exist if a LOS condition exists from at least two MCSs to the symbol

location point of the SPP. The symbol location point was used as a

reference point for the SPP since no SPP headquarters unit had been defined

as part of the SPP unit. That is, the only defined subordinate units

defined for the SPP were the TRAILBLAZER section and the TEAMPACK section.

It could be considered preferable from a face validity viewpoint to have

defined the SPP headquarters as a subordinate unit of the SPP. In this

case, the LOS-to-headquarters criterion would be stated in terms of LOS

conditions between the MCSs and the location of the SPP headquarters unit

instead of the location of the SPP symbol location point. The theoretical

preference for the former is that the SPP headquarters unit would be a

military object, whereas the symbol location point is merely a Scenarist

artifact (viz., a map symbol location, not a unit location). ("Face

validity" refers to the degree to which the entities and processes of a

model bear a close correspondence to the entities and processes of the real

world.) In any event, the symbol location point is an SPP attribute, and

the effect of using the symbol location point vs. an SPP headquarters

 19

location is identical, because the SPP headquarters would have been located

exactly at the SPP symbol location point.

Some additional consideration should be given to the use of symbol location

points as reference points. In the current version of the Scenarist, the

user may relocate units without parent units, or subordinate units of

geographic type 6 (subunits of absolute radius) or 7 (point objects --

platforms or equipment). The SPP is an "all-area" unit, and so the only

way of relocating its symbol location point is to delete and redefine the

EW company (where the SPP symbol location point is defined). This is

substantially more effort than relocating subunits, because not only the

EW company but all of its subordinate units (the SPP, the TRAILBLAZER

section, and the TEAMPACK section) would have to be redefined. This was

not a problem in the test (since the SPP symbol location point was not

relocated), but it could present a problem in a future application. Based

on the realization that this could be a problem, however, it is recommended

that in future applications all units that will be referred to in the rules

should be explicitly defined. In the present test, several of them were

(viz., the division headquarters company, the battalion headquarters

company, and EW headquarters platoon). It was not realized when the units

were defined that we would be making reference to the SPP headquarters,

and so it was not explicitly defined. It may be desirable to adopt the

policy of defining a headquarters unit for all units, so that this problem

cannot arise.

The function _lostoheadquarters returns three values: 0 (no data), 1

(unsatisfactory LOS to headquarters), or 2 (satisfactory LOS to

headquarters).

6. _disttootherunits: This function computes the distance from an MCS to

the nearest other MCS. The return value is the distance, in meters.

7. _disttofront: This function computes the distance from an MCS to the

division front. The return value is the distance, in meters.

8. _inforwardarea: This function determines whether an MCS is located in

the front half of the TRAILBLAZER section area. (Note: This criterion

differs a little from the one derived from the documents. It is about the

same, but much simpler to implement, for the following reasons. The

TRAILBLAZER section area coincides with the division area, since the

TRAILBLAZER section and its parent units (all the way up to the division)

are all "all-area" units. The problem of determining the division

front/rear boundary involves some computation. First, the division code

must be determined (the division code is the first four digits of the

TRAILBLAZER section code). Then, the division must be accessed from the

specific unit file. If it exists (i.e., has been defined and is in the

specific unit file), then the coordinates of its front/rear boundary line

must be accessed, and a computation done to see whether the MCS lies in

front of this line. If the division had not been defined, no decision could

be made (i.e., "no data"). To avoid all of these computations, it was much

simpler, and about as accurate, to simply test whether the MCS was located

in the front half of the TRAILBLAZER section area.)

 20

It returns two values: 0 (not in forward area), or 1 (in forward area).

9. _roads: This function determines the availability of roads at a location.

This is determined by examining the code of the road map cell containing

the location. This function returns three values: 0 (no data), 1 (no road

exists in the cell), or 2 (a road is present in the cell).

Prior to the TRAILBLAZER application, a number of other functions had been

defined, and two of them were used in computing the preceding functions.

Those already-defined functions were:

10. _terrain: This function determines the type of terrain at a location.

Its return values are: 0 (no data), 1 (plains), 2 (hills), 3 (woods), 4

(mountains), 5 (urban) and 6 (water).

11. _elevation: This function returns the elevation at a location. Its

return values are 0 (no data) or the elevation in meters.

The goal of the Scenarist was to determine rules for placement that took

into account terrain, mission, and threat. The factors that relate to

specific terrain are 1-5 and 9-11. The factor that relates to specific

mission and specific enemy threat is factor 3 (_lostotarget). Factors 6

(_disttootherunits) and 7 (_disttofront) relate to basic tactical doctrine

for relative positioning of the TRAILBLAZER system, independent of specific

terrain, mission, or enemy threat.

Having determined quantitative definitions for the concepts (factors) that

were present in the rules extracted from the TRAILBLAZER documents, we will

now specify the rules that were defined in terms of these factors and input

to the Scenarist. Before doing so, however, it is helpful to divide these

rules into two categories -- "local-constraint" rules, and

"global-constraint" rules. Local-constraint rules are rules that involve

factors whose values can be determined for a subordinate unit (an MCS, in

the TRAILBLAZER application) without any knowledge of the positions of any

other subordinate units. The values of these factors will be unaffected

by any subsequent repositioning of the other subordinate units (MCSs) in

the unit. Examples of such factors are terrain type, LOS to target, or

distance to the FEBA.

On the other hand, global-constraint rules are rules that involve factors

whose values are dependent on the positions of other subordinate units (in

this case, MCSs). The values of such factors may change for a particular

MCS if the location of another MCS is changed, even though the location

of that particular MCS does not change.

The reason for considering rules in the two categories is that the Scenarist

processes the two types of rules differently. It first processes the

local-constraint rules, conducting a "spiral search" around the initial

location of a subunit (MCS) in the search for a suitable location. This

search can be done independently of the locations of the other MCSs (because

 21

of the definition of a local-constraint rule) and the suitability of a found

location will not change if some other MCSs are repositioned at a later

time.

After the local-constraint rules and the spiral search have been applied

for all subunits (MCSs), the Scenarist proceeds to process the

global-constraint rules. The "problem" with a global-constraint rule is

that, even though an MCS may be in a suitable location at one time, the

suitability of that location may change if some other MCS is repositioned

(e.g., the MCS may no longer have LOS to at least two other MCSs). In the

language of optimization theory, the constraints are not "separable" with

respect to the MCSs. This situation dramatically increases the difficulty

of finding a suitable configuration for the set of five MCSs, because the

optimization cannot be accomplished simply by conducting a local

optimization (search) for each MCS independently.

It was never the intent of the Scenarist project to determine a

mathematically rigorous solution to a type of optimization problem. Quite

otherwise, it was the intent to use an expert (rule-based) system to

determine configurations (laydowns) that were consistent with the rules.

Nevertheless, the issue of satisfying global constraints cannot be avoided,

since they are explicit in the tactical doctrine for placing TRAILBLAZER

equipment. The problem was, then, to develop rules and actions that could

produce "reasonable" laydowns in the presence of global constraints.

In the Scenarist development that had occurred prior to the TRAILBLAZER

test, all of the rules had been local-constraint rules -- all subunit

positioning was accomplished simply by conducting a single spiral search

for each subunit. The Scenarist design did not call for the handling of

global constraints. Because global constraints were an essential feature

of TRAILBLAZER placement, however, it was considered necessary to modify

the Scenarist design to accommodate them. This modification was

undertaken and accomplished in the test.

It was decided to handle global constraints in the following manner.

First, the local constraints would be processed for all subunits (MCSs).

Then, the status (suitability of the location) of each MCS with respect

to all constraints -- both local and global -- would be examined, and an

"action" would be taken. The particular action would be a function of the

status of the MCS with respect to all constraints. After assessing the

suitability and taking a corresponding action for one MCS, the next MCS

would be processed in the same way. After processing all five MCSs in this

way, a single "global search" iteration was said to have been completed.

Then, two more global search iterations were conducted (for a total of three

global search iterations).

The "action" to be taken at each processing stage was quite simple. If

the MCS location was suitable (i.e., all local constraints and all global

constraints were satisfied), then the MCS was left at that location. If

the MCS location was not suitable for any reason, then all eight of its

neighboring unit gridcells were examined. If any neighboring cells were

found having equal or higher elevation, the MCS was moved to the neighboring

 22

cell having highest elevation. Otherwise the MCS was left in the same

location. This process terminated either when three complete iterations

was accomplished, or no movement occurred for any MCS on a particular

iteration.

The preceding action was implemented because it seems quite reasonable --

most of the TRAILBLAZER global constraints are LOS-related, and LOS is

likely to improve if the unit moves to higher ground. If all of the MCSs

end up on local maxima, then the process stops. If, after three iterations,

the locations are not suitable for all MCS, the process stops. In this

case, the user would have to examine the configuration, and either accept

it or manually reposition the units.

The preceding process is repeated for each of the six map resolutions,

starting with the lowest-resolution map set (specified in the project file

proj0206.fil) and finishing with the highest-resolution map set (specified

in the project file proj0201.fil). For each resolution, the adjustments

to the subunit positions are smaller and smaller, since the unit gridsize

is the same as the cellwidth of the elevation map (so that the relocation

of a unit to a neighboring grid cell involves a move of distance equal to

the elevation map cell width (or square root of 2 times this distance, if

the move is made to a "corner" neighbor)).

The reason for terminating the global search after three iterations is that,

for the low-resolution map set, the moves can distort the configuration

of the TRAILBLAZER units substantially from a "W" formation. To avoid

massive distortions, either a limit must be placed on the number of

iterations, or the action must involve the specification of an entire

five-MCS TRAILBLAZER configuration (rather than the movement of a single

MCS at a time). While the latter approach is feasible (it could be

implemented, for example, by selecting a new system configuration from a

prespecified set of alternative configurations), it was considered far too

ambitious for the present test.

Note that the number of iterations could be increased for the

higher-resolution map sets without appreciably changing the overall system

configuration, because the MCS movements become smaller and smaller as the

map resolution increases. There is little point in doing so, however,

since the LOS to faraway points is not likely to change much from small

changes in the MCS location. The main reason for the relocations on the

higher-resolution maps is to satisfy local constraints, not global ones.

TRAILBLAZER Rules Input to the Scenarist

The following rules were input to the Scenarist. These rules were

implemented both in C-language code and in the CLIPS expert system. The

functions defining the factor values and the action were implemented only

in C code.

Local Rules

A location is unsuitable if:

 23

1. For any unit:

a. The terrain type is water, mountain, or urban

2. For TRAILBLAZER squad/teams (i.e., units of side 1

(BLUE), echelon 11 (TRAILBLAZER squad/teams) and type 1

(TBMCS):

a. The location is not accessible

b. The location does not have LOS to the objective

defined for the parent unit (i.e., the TRAILBLAZER

section containing the squads)

c. The distance to the front is less than 2000 m.

d. The location is not in the front half of the

TRAILBLAZER section area.

Otherwise, the location is suitable.

Global Rules

A location is unsuitable if:

1. For TRAILBLAZER squad/teams:

a. The squad/team has LOS to fewer than two other

TRAILBLAZER squad/teams in the TRAILBLAZER section

containing the squad/teams

b. Fewer than two squad/teams of the TRAILBLAZER

section containing this subunit have LOS to the

symbol location point of the TRAILBLAZER section

containing the squad/teams.

c. The minimum distance between TRAILBLAZER squad/

teams is less than 5000 m.

Otherwise, the location is suitable.

4.4. Apply Rules to Reposition Items

In order to use the Scenarist to apply rules to reposition items

(subordinate units or equipment), it is necessary to specify what map files,

unit files, symbol files, suitability functions, rule functions, action

functions, and CLIPS rule files are to be input at the beginning of the

run. The map files can be changed during the course of the run. These

files and functions are specified in a "project" file. The six project

file used in the test of the Scenarist were as follows.

proj0201.fil (the last file used in the run; it contains the

highest-resolution maps):

1. intro.fil (contains the Scenarist introduction)

2. titl01.fil (no longer used)

3. geod0201.fil (terrain-type cell map)

4. geoc0201.fil (elevation cell map)

5. geor0201.fil (road cell map)

6. geoa02.fil (area objects for vector (background) map)

7. geol02.fil (linear objects for vector map)

8. geop02.fil (point objects for vector map)

9. genu01.fil (generic unit file)

10. spec02.fil (specific unit file)

11. scra01.fil (scratch file)

 24

12. symb01.fil (symbol and label file)

13. plat01.fil (platform file)

14. eqpt01.fil (equipment file)

15. feba02.fil (FEBA file)

16. _suitability0201 (suitability function)

17. _preprocessing0201 (preprocessing function)

18. _action0201 (action function)

19. _clipssuitability0201 (CLIPS interface function)

20. clip0201.fil (CLIPS rule file)

Some comments are in order. First, the suffix of the first part of each

file name (e.g., 0201) is a two or four-digit code referring to problem

number (e.g., 02) and (optionally) to a subproblem number (e.g., 01). The

project number 02 was assigned to the test (i.e., the TRAILBLAZER

application). The number 01 was used for the Beqaa Valley example used

during the Scenarist development. In some instances, files that were used

in problem 01 could also be used in project 02, either as-is or with

additions. Such files include any files that do not contain map coordinate

references, such as the generic unit file (genu01.fil), the scratch file

(scra01.fil), the symbol file (symb01.fil), the platform file

(plat01.fil), and the equipment file (eqpt01.fil).

Note that, since the file genu01.fil from problem 01 was used in problem

02, it now contains the generic units for both problems. Similarly, the

file symb01.fil contains symbols for both problems. At some point, the

user may want to start with a new generic unit file (i.e., if the new

application has nothing to do with TRAILBLAZER), in order to reduce storage

space or unit accessing time.

Some of the file names of files specific to problem 02 have subproject

suffixes, and some do not. All of the cellular map file filenames have

subproject suffixes: the subproblem suffix specifies the map resolution

level. The vector map file filenames have no subproblem suffixes since

there is only one set of such files (i.e., there are no resolutions or

alternative files).

The platform and equipment files are empty in the current application,

because the TRAILBLAZER MCS (the lowest-level item in the deployment) is

a squad/team (echelon 11, in the Scenarist echelon structure).

The suitability function, preprocessing function, action function, CLIPS

interface function, and CLIPS rule file names have subproblem suffixes (all

01), since it was thought that alternative functions and files would be

used during the course of the test. They were not, so, in retrospect, the

subproblem suffix for these functions and files could have been omitted.

The other five project files used in the TRAILBLAZER test contain the same

file and function names as proj0201.fil, except for the cellular maps:

proj0202.fil contains geod0202.fil, geoc0202.fil, and

 25

geor0201.fil (Note: proj0202.fil contains the

same road file as proj0201.fil, because the

resolution of the Spearfish road map was 100 m

and the resolution of the terrain-type and

elevation maps was 30 m. After the first

aggregation stage, the terrain-type and

elevation maps had resolution 90 m, which

was close to the resolution of the road map.

Since the resolutions of all maps used in an

analysis should be as similar as possible,

the highest-resolution road map file,

geor0201.fil, was used with geod0202.fil and

geoc0202.fil.)

proj0203.fil contains geod0203.fil, geoc0203.fil, and

geor0202.fil

proj0204.fil contains geod0204.fil, geoc0204.fil, and

geor0203.fil

proj0205.fil contains geod0205.fil, geoc0205.fil, and

geor0204.fil

proj0206.fil contains geod0206.fil, geoc0206.fil, and

geor0205.fil

The function of the project files is simply to provide the user with a

convenient way of starting the Scenarist processing, without having to

input all of the map, unit, and rule files and functions every time. The

map files can be changed during the course of a run, but if changes are

desired in other files or any of the functions, the Scenarist program would

have to be exited, appropriate changes made to the project file, and the

program re-executed.

In the Scenarist runs to be described below, the run begins with the project

file containing the lowest-resolution maps, i.e., with proj0206.fil.

Then, during the course of the run, successively higher-resolution map

files are called in. Note that when this is done, maps of comparable

resolution should be used, and the run should proceed to use maps of the

next-higher resolution. For example, the user could start with project

file proj0201.fil and, after applying the rules with its map files

(geod0201.fil, geoc0201.fil, and geor0201.fil) proceed to call in the

next-higher-resolution map files geod0202.fil and geoc0202.fil (keeping

the road file geor0201.fil, whose resolution matches that of the

terrain-type and elevation map files). Alternatively, the user could exit

the program and start a new run with project file proj0202.fil.

When the repositioning rules have been applied at a given stage, the user

has the option of either writing the changed locations of the relocated

subunits (MCSs) into the file spec02.fil (over the original locations),

or not saving the changes. If he is proceeding to relocate the units with

 26

a higher-resolution map, he should save the changes. If the changes are

saved, however, the original file will be modified. If it is desired to

return to the original specific unit file, a backup version of it should

be saved. Such a backup version has in fact been saved, and is called

spec02.can (suffix "can" for "canonical"). If it is desired to return to

the original specific unit file, the backup file should be copied into

spec02.fil (i.e., copy spec02.can to spec02.fil). Similarly, once the

process of repositioning is completed, the user will want to save the file

spec02.fil so that it is not inadvertently overwritten as just suggested.

It could be copied, for example, to a file name spec02.rep (suffix "rep"

for "repositioned").

STEP-BY-STEP EXECUTION OF THE SCENARIST TO REPOSITION ITEMS.

With the project files ready, the Scenarist may be executed to reposition

the TRAILBLAZER MCSs. The series of steps to reposition the TRAILBLAZER

items is as follows.

1. Select project file proj0206.fil. This file contains the

lowest-resolution map files, geod0206.fil (terrain type), geoc0206.fil

(elevation), and geor0205.fil (roads).

2. Draw one or more maps (terrain type, elevation, roads, or a vector map),

according to the user's preference. Note that the vector map (which

contains only roads) takes a couple of minutes to draw, because of the very

large number of road segments represented in the GRASS data base.

Furthermore, it is not helpful to add labels to this map at a low resolution,

because the labels overwrite each other and quickly blot out the map.

Because of the importance of elevation and roads to the TRAILBLAZER

application, the user will probably wish to use an elevation map or road

map throughout most of the analysis. Note that individual roads are not

apparent on the low-resolution maps (although they are quite apparent on

the high-resolution maps).

3. Place one or more of the units on a map. A list of codes for all of

the defined units may be obtained by executing the "Display Units" function

(for screen output) or the "Output Units" function (printer output). Note

that the location point of the map is in the upper-left-hand-corner of the

screen, so that part of the units and the FEBA fall off the screen. The

map location can be shifted so that the unit falls in the middle of the

screen.

Changing the map location may be done in either of two ways, using the

function "Change Map Location." First, the location point may be specified

as the upper-left hand-corner of the map, and the coordinates

(580000,4950000) specified. Or, alternatively, the location point may be

specified as the center of the map. To use the latter option, it is helpful

to know the locations of various items. The locations of all items in the

data base may be obtained by executing the "Output Units" function. Note

that the location of the fourth TRAILBLAZER MCS (which does fall on the

map) is (595400,4919800). In the analysis that follows, we shall select

 27

maps of higher and higher resolution, and observe the repositioning of this

MCS. In each case, we will select the option to use the center of the map

as the map location point, and specify the location of MCS no. 4 as the

location point. (Note: for the first three map sets, all three MCSs on

the map can be seen on the screen without relocating the map. For the higher

resolution map sets, however, MCS no. 4 falls off the map in its original

location, so that relocation is necessary to see it.)

By selecting either of the preceding map location point options, the user

can see a large-scale display of the entire division or any subordinate

units on the battlefield. Since the TRAILBLAZER MCSs are contained in the

TRAILBLAZER section (code 1 1 1 2 0 0 1 1 1 1 0), it is interesting to display

this unit. The user can see all of the MCSs in their canonical locations,

the objective (target area) of the section, and the FEBA. Note that two

of the MCSs are off the Spearfish map (i.e., they fall in "no data" cells).

These MCS are of little interest in the test, since they will always remain

in their canonical locations. The interesting cases are the three MCSs

in the part of the map having data. In the repositioning that follows,

we will, as mentioned above, display the results only for MCS no. 4 (even

though the rules are applied to all of them).

4. Redraw a map (to get a clean display). Execute the repositioning rules,

by selecting the function, "Reposition Subunits by Rules." Save the new

positions (i.e., specify that the units should be saved, when presented

with that option).

5. Change to the next-higher-resolution map set, by executing the function

"Change Map Files." Select the following map files: geod0205.fil

(terrain-type map); geoc0205.fil (elevation map); and geor0204.fil (road

map). (Alternatively, exit the program and restart it with project file

proj0205.fil, which specifies these maps.) Draw a map. (If desired, the

map location may be specified to center the map at (595400,4919800) (the

location of MCS no. 4) prior to drawing the map.) Execute the rules. Save

the new positions.

6. Change to the next-higher-resolution map set (geod0204.fil,

geoc0204.fil, geor0203.fil), by using the function "Change Map Files" or

restarting the program and selecting project file proj0204.fil. Draw a

map. (If desired, locate the map to center point (595400,4919800) prior

to drawing the map.) Execute the rules. Save the new positions. Note:

For the higher-resolution map files, the running time can range up to a

couple of minutes to extract the map from the data files, and to process

the rules.

7. Change to the next-higher-resolution map set (geod0203.fil,

geoc0203.fil, geor0202.fil), by using the function "Change Map Files" or

restarting the program and selecting project file proj0203.fil. Locate

the map to have center point (595400,4919800). Draw a map. Execute the

rules. Save the new positions.

 28

8. Change to the next-higher-resolution map set (geod0202.fil,

geoc0202.fil, geor0201.fil), by using the function "Change Map Files" or

restarting the program and slecting project file proj0202.fil. Locate the

map to have center point (595400,4919800). Draw a map. Execute the rules.

Save the new positions.

9. Change to the next-higher-resolution map set (geod0201.fil,

geoc0201.fil, geor0201.fil), by using the function "Change Map Files" or

restarting the program and slecting project file proj0201.fil. Locate the

map to have center point (595400,4919800). Draw a map. Execute the rules.

Save the new positions.

4.5. Output the Item Locations.

10. Execute the function "Output Units." Specify the name of the output

file to be out0201.fil (or any other desired name), or specify that the

output is to the printer. All of the units in the file, including the

repositioned items(TRAILBLAZER MCSs) will be written to this file (or to

the printer, if so specified), in ASCII format.

In an application in which the Scenarist is being used to develop laydowns

that will be input to another computer model (e.g., a tactical combat

model), the user would wish to format the unit and equipment locations as

required by that other model. To do so, the function _outputunits would

be replaced by a function that produced a file in the desired format.

Appendix B contains an example of the output produced by the Output Units

function. The sample output is the formatted versions of all units defined

in Appendix A and stored in the generic and specific unit files.

4.6. Demonstrate User-Positioning of an Item.

11. Exit the program. Copy the file spec02.can to spec02.fil (hence

resetting all items to canonical locations). Restart the program using

the second-lowest-resolution map set (project file proj0205.fil, which

includes maps geod0205.fil, geoc0205.fil, and geor0204.fil). Draw a map.

Place the TRAILBLAZER section (code 1 1 1 2 0 1 1 1 1 0) on the map. Execute

the function "Reposition Subunits by User," and select the option to

reposition subunits of a specific unit.

The current (old) locations (in standard coordinates) of all of the MCSs

are printed out, along with their radii and "placement codes":

Subunit 1: .1 .1 25 0

Subunit 2: .3 .3 25 0

Subunit 3: .5 .1 25 0

Subunit 4: .7 .3 25 0

Subunit 5: .9 .1 25 0

Reposition the subunits as follows. The placement code 1 (user-reviewed,

unchanged) means that the user has reviewed the subunit position but not

moved it; the placement code 2 (user-suggested placement) means that the

user is relocating the subunit, but that the rules are allowed to move it

 29

from that position; the placement code 3 (user-mandated placement) means

that the user is relocating the subunit, and the rules are not allowed to

alter the position.

Subunit 1: .1 .1 25 1

Subunit 2: .3 .3 25 1

Subunit 3: .5 .05 25 2

Subunit 4: .65 .25 25 2

Subunit 5: .9 .05 25 3

Note that subunits 3 and 5 have been moved to within about half a kilometer

of the front, in violation of the rule that the MCSs must be at least 2

km behind the front. As we will see, the rules will relocate subunit 3,

but will not alter the position of subunit 5.

Save the reconfigured unit. Output the units to file out0202.fil.

Draw a map. Execute the function, "Reposition Subunits by Rules."

Observe that subunit 3 is relocated to a position over 2 km in back of the

front, but that the position of subunit 5 is unchanged. Save the

reconfigured unit. Output the units to file out0203.fil.

Exit the program. Type the file out0201.fil (MS-DOS command "type

out0201.fil |more"), noting the position (in real coordinates) of subunit

5 of unit 11: (591800,4924600). This is the original position of subunit

5. Now, type the file out0202.fil, noting the position to which the subunit

5 had been relocated: (591900,4925700). Finally, type the file

out0203.fil, noting that this position is unchanged.

This completes this test procedure. During this test procedure, it was

realized that it would be a desirable feature to be able to relocate subunits

in real (map) coordinates, not just in standard coordinates. This

modification is recommended for a later date.

4.7. Relocate the Division. Exit the program. Copy the file spec02.can

to spec02.fil (hence resetting all items to canonical locations). Restart

the program using the lowest-resolution map set (project file

proj0206.fil). Draw a map. Place the division (code 1 1 1 2 0 0 0 0 0

0 0) on the map. Execute the function "Reposition Unit by User," to shift

the division 5000 m to the east, i.e., to add 5000 to each x-coordinate

of the unit corners. The program prints out the following coordinates:

610000 4925000

590000 4927000

588000 4905000

608000 4903000

Input the following coordinates:

615000 4925000

595000 4927000

593000 4905000

613000 4903000

Save the unit. Output the unit to file out0204.fil. Exit the program.

Type the file out0204.fil, and note that, for every subordinate unit in

the division, every x-coordinate is 5000 meters greater than the

 30

corresponding coordinate in file out0201.fil (the original canonical

unit). If the unit is displayed in a subsequent run, it will be translated

500 m to the east.

5.0. Summary

The test procedures and results described in the preceding section

demonstrate the ability of the Scenarist to successfully perform every

procedure specified in the test plan. In summary, the test was 100%

successful, and demonstrates the ability of the Scenarist to reposition

units using high-resolution data on a microcomputer.

The Scenarist program was designed to graphically demonstrate the

relocation of a subunit by the rules, and to show which rules were violated

if the canonical location placed it in an unsuitable location. These

features were nicely demonstrated by the Beqaa Valley sample data set used

in the course of developing the Scenarist system, and to a degree in this

test, which used the GRASS/Spearfish map data. In any event, the Spearfish

example did demonstrate the ability to use high-resolution data (comparable

in resolution to Defense Mapping Agency (DMA) data), to have acceptable

running times on a microcomputer, and to position and relocate a "realistic"

system on digital terrain.

 Appendix A

 Scenarist Test Deployment

 (Data used to define the generic units

 and specific units used in the test.)

Appendix A. Scenarist Test Deployment

A. Units Used in Beqaa Valley Problem

 31

Generic Unit file:genu01.fil

Specific Unit file: spec01.fil

FEBA File: feba01.fil

1. Define a Generic Division of Type 1

Name: Division1

Code: 1 1 1 1 0 0 0 0 0 0 0

Type: 1

Front/Rear boundary points: .5 .5

NFRONT: 2

NFRONT sets of (echelon,no.,type,idno): 5 1 1 0 5 2 1 0

NFRONT-1 boundary points: .5 .5

NREAR: 0

NALLAREA: 0

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 0

NPOINT: 0

2. Copy Generic Division of Type 1 to a Specific Division, BLUE

New Unit's Name: Division1

Old Code: 1 1 1 1 0 0 0 0 0 0 0

New Code: 1 1 1 1 0 0 0 0 0 0 0

Parent Code: 1 1 1 0 0 0 0 0 0 0 0

Idno,parentidno: 141 131

4 Corners: 92000 30000 96000 46000 74000 48000 72000 34000

(Note: for Spearfish, SD, map use (in file spec02.fil):

610000 4925000 590000 4927000 588000 4905000 608000 4903000)

Objective: yes (i.e., input a "1")

(Note: for Spearfish, SD, map use 0 (in file spec02.fil)

Mission type: 1

2 Corners: 124000 36000 128000 32000

No. pts on avenue of approach: 1

Coords: 112000 38000

3. Copy Generic Division of Type 1 to a Specific Division, RED

New Unit's Name: RedDivision1

Old Code: 1 1 1 1 0 0 0 0 0 0 0

New Code: 2 1 1 1 0 0 0 0 0 0 0

Parent Code: 2 1 1 0 0 0 0 0 0 0 0

Idno,parentidno: 241 231

4 Corners: 110000 44000 106000 28000 128000 30000 130000 40000

(Note: for Spearfish, SD, map use (in file spec02.fil):

591000 4937000 611000 4935000 613000 4955000 593000 4957000)

Objective: no (i.e., hit "enter")

4. Define a Generic Brigade of Type 1

 32

Name: MechBde1

Code: 1 1 1 1 1 0 0 0 0 0 0

Type: 1

Front/Rear Boundary Points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 2

NALLAREA sets of Echelon,no.,type,idno: 8 1 1 0 8 2 2 0

NALLAREA sets of symbol location pts: .4 .4 .6 .55

(Note: this example is not realistic -- in reality, the

radar units are division assets, not brigade assets.)

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 0

NPOINT: 0

5. Copy Generic Brigade of Type 1 to a Specific Brigade (Right Front of

Division), BLUE

Name: MechBde1

Old Code: 1 1 1 1 1 0 0 0 0 0 0

New Code: 1 1 1 1 1 0 0 0 0 0 0

Parent Code: 1 1 1 1 0 0 0 0 0 0 0

Idno,parentidno: 151 141

Objective: no

6. Copy Generic Brigade of Type 1 to a Specific Brigade (Left Front of

Division), BLUE

Name: MechBde2

Old Code: 1 1 1 1 1 0 0 0 0 0 0

New Code: 1 1 1 1 2 0 0 0 0 0 0

Parent Code: 1 1 1 1 0 0 0 0 0 0 0

Idno,parentidno: 152 141

Objective: no

7. Define a Generic Field Artillery Battery of Type 1

Name: FA_Batt1

Code: 1 1 1 1 1 0 0 1 0 0 0

Type: 1

Front/Rear Boundary Points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 0

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 4

NMINORSUBAREAABS sets of (echelon,no.,type,idno):

10 1 1 0 10 2 2 0 10 3 2 0 10 4 3 0

 33

NMINORSUBAREAABS sets of (location point x,y, radius):

.4 .4 50 .13 .4 50 .87 .4 50 .4 .75 50

NPOINT: 0

8. Copy Generic Field Artillery Battery of Type 1 to Specific Field

Artillery Battery (in brigade MechBde1, on right front of Division1), BLUE

Name: FA_Batt1

Old Code: 1 1 1 1 1 0 0 1 0 0 0

New Code: 1 1 1 1 1 0 0 1 0 0 0

Parent Code: 1 1 1 1 1 0 0 0 0 0 0

Idno,parentidno: 181 151

Objective: no

9. Define a Generic Air Defense Artillery Battery of Type 1

Name: ADA_Batt1

Code: 1 1 1 1 1 0 0 2 0 0 0

Type: 2

Front/Rear Boundary Points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 0

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 4

NMINORSUBAREAABS sets of (echelon,no.,type,idno):

10 1 4 0 10 2 5 0 10 3 5 0 10 4 5 0

NMINORSUBAREAABS sets of (location point x,y, radius):

.6 .55 50 .13 .2 50 .87 .2 50 .53 .5 50

NPOINT: 0

10. Copy Generic Air Defense Artillery Battery of Type 1 to Specific Field

Artillery Battery (in brigade MechBde1, on right front of Division1), BLUE

Name: ADA_Batt1

Old Code: 1 1 1 1 1 0 0 2 0 0 0

New Code: 1 1 1 1 1 0 0 2 0 0 0

Parent Code: 1 1 1 1 1 0 0 0 0 0 0

Idno,parentidno: 182 151

Objective: no

12. FEBA

No. of points on FEBA: 3

Points: 99000 28000 101000 37000 104000 46000

(Note: for Spearfish, SD, map use (in file feba02.fil):

585000 4932000 600000 4931000 615000 493000)

B. Units Used in TRAILBLAZER Problem

 34

Generic Unit file:genu02.fil

Specific Unit file: spec02.fil

FEBA File: feba02.fil

1. Define a Generic Division of Type 2

(Note: this division is assigned type 2 to distinguish it from the division

defined above)

Name: Division2

Code: 1 1 1 2 0 0 0 0 0 0 0

(Note: this division is assigned number 2 to distinguish it from the

division defined above. In order to access units, the Scenarist requires

that every unit have a unique code.)

Type: 2

Front/Rear boundary points: .4 .4

NFRONT: 2

NFRONT sets of (echelon,no.,type,idno("ENTI"):5 1 2 0 5 2 2 0

NFRONT-1 boundary points: .5 .5

NREAR: 0

NALLAREA: 1

NALLAREA sets of ENTI: 7 1 1 0 (Note: this is the MI Bn)

NALLAREA sets of symbol location points: .4 .8

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 1 (Note: this is the DivHQCo)

NMINORSUBAREAABS sets of ENTI: 8 1 3 0

NMINORSUBAREAABS sets of loc pt & rad: .5 .9 200

NPOINT: 0

2. Copy Generic Division of Type 2 to a Specific Division, BLUE

New Unit's Name: Division2

Old Code: 1 1 1 2 0 0 0 0 0 0 0

New Code: 1 1 1 2 0 0 0 0 0 0 0

Parent Code: 1 1 1 0 0 0 0 0 0 0 0

Idno,parentidno: 142 131

4 Corners: 610000 4925000 590000 4927000 588000 4905000 608000 4903000

Objective: no

3. Define a Generic Military Intelligence (MI) Battalion of Type 1

Name: MIBn1

Code: 1 1 1 2 0 0 1 0 0 0 0

Type: 1

Front/Rear boundary points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 1

NALLAREA sets of ENTI: 8 1 5 0 (Note: this is the EW Co)

NALLAREA sets of symbol location points: .25 .35

NMAJORSUBAREA: 0

 35

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 1 (Note: this is the MIBnHQCo)

NMINORSUBAREAABS sets of ENTI: 8 2 4 0

NMINORSUBAREAABS sets of loc pt & rad: .4 .8 100

NPOINT: 0

4. Copy Generic MI Battalion of Type 1 to a Specific MI Battalion, BLUE

Name: MIBn1

Old Code: 1 1 1 2 0 0 1 0 0 0 0

New Code: 1 1 1 2 0 0 1 0 0 0

Parent Code: 1 1 1 2 0 0 0 0 0 0 0

Idno, parentidno: 171, 142

Objective: no

5. Define a Generic Electronic Warfare (EW) Company of Type 1

Name: EWCo1

Code: 1 1 1 2 0 0 1 1 0 0 0

Type: 1

Front/Rear boundary points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 1

NALLAREA sets of ENTI: 9 1 2 0 (Note: this is the SIGINT Processing Platoon

(SPP))

NALLAREA sets of symbol location points: .2 .3

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 1 (Note: this is the EWHQPlt)

NMINORSUBAREAABS sets of ENTI: 9 2 1 0

NMINORSUBAREAABS sets of loc pt & rad: .25 .35 50

NPOINT: 0

6. Copy Generic EW Company of Type 1 to a Specific EW Company, BLUE

Name: EWCo1

Old Code: 1 1 1 2 0 0 1 1 0 0 0

New Code: 1 1 1 2 0 0 1 1 0 0 0

Parent Code: 1 1 1 2 0 0 1 0 0 0 0

Idno, parent idno: 181 171

Objective: no

7. Define a Generic SIGINT Processing Platoon (SPP) of Type 1

Name: SPP1

Code: 1 1 1 2 0 0 1 1 1 0 0

Type: 1

Front/Rear boundary points: 0 0

NFRONT: 0

NREAR: 0

 36

NALLAREA: 2

NALLAREA sets of ENTI: 10 1 6 0 10 2 7 0 (Note: these are the TRAILBLAZER

and TEAMPACK sections)

NALLAREA sets of symbol location points: .2 .3 .3 .3

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 0

NPOINT: 0

8. Copy Generic SPP of Type 1 to a Specific SPP, BLUE

Name: SPP1

Old Code: 1 1 1 2 0 0 1 1 1 0 0

New Code: 1 1 1 2 0 0 1 1 1 0 0

Parent Code: 1 1 1 2 0 0 1 1 0 0 0

Idno, parentidno: 191 181

Objective: no

9. Define a Generic TRAILBLAZER Section of Type 1

Name: TBSec1

Code: 1 1 1 2 0 0 1 1 1 1 0

Type: 1

Front/Rear boundary points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 0

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 5 (Note: these are the five TRAILBLAZER Master Control

Stations)

NMINORSUBAREAABS sets of ENTI: 11 1 1 0 11 2 1 0 11 3 1 0 11 4 1 0 11 5

1 0

NMINORSUBAREAABS sets of loc coords, radius: .1 .1 25 .3 .3 25 .5 .1 25

.7 .3 25 .9 .1 25 (Note: these coordinates correspond to the "W"

configuration of the canonical TRAILBLAZER laydown)

NPOINT: 0

10. Copy Generic TRAILBLAZER Section of Type 1 to a Specific TRAILBLAZER

Section, BLUE

Name: TBSec1

Old Code: 1 1 1 2 0 0 1 1 1 1 0

New Code: 1 1 1 2 0 0 1 1 1 1 0

Parent Code: 1 1 1 2 0 0 1 1 1 0 0

Idno, parentidno: 1101 191

Objective: yes

Mission type: 2

Coordinates of bounding rectangle of objective: 591000 4937000 613000

4955000

 37

11. Define a Generic TEAMPACK Section of Type 2 (Note: no rules were

developed for the TEAMPACK -- just the following canonical laydown. The

section type is 2 to distinguish it from the TRAILBLAZER section, which

is a section of type 1.)

Name: TPSec1

Code: 1 1 1 2 0 0 1 1 1 2 0

Type: 2

Front/Rear boundary points: 0 0

NFRONT: 0

NREAR: 0

NALLAREA: 0

NMAJORSUBAREA: 0

NMINORSUBAREAREL: 0

NMINORSUBAREAABS: 3 (Note: these are the three TEAMPACK teams)

NMINORSUBAREAABS sets of ENTI: 11 1 2 0 11 2 2 0 11 3 2 0

NMINORSUBAREAABS sets of loc coords, radius: .1 .05 25 .4 .05 25 .6 .05

25

NPOINT: 0

12. Copy Generic TEAMPACK Section of Type 2 to a Specific TEAMPACK Section,

BLUE

Name: TPSec1

Old Code: 1 1 1 2 0 0 1 1 1 2 0

New Code: 1 1 1 2 0 0 1 1 1 2 0

Parent Code: 1 1 1 2 0 0 1 1 1 0 0

Idno, parentidno: 1102 191

Objective: yes

Mission type: 2

Coordinates of bounding rectangle of objective: 591000 4937000 613000

4955000

13. FEBA

No. of points on FEBA: 3

Points: 585000 4932000 600000 4931000 615000 493000)

Code:

1: Side

2: Army

3: Corps

4: Division

5: Brigade

6: Regiment

7: Battalion

8: Company/Battery

9: Platoon

10: Section

11: Squad/Team

(12: Platform)

(13: Equipment)

 38

 Appendix B. Sample Output File

 (Formatted printout of all units defined in Appendix A,

 and stored in the generic unit and specific unit files.)

