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1. OVERVIEW 

 
THIS PRESENTATION SUMMARIZES THE THEORY OF MULTIVARIATE STATISTICAL 
ANALYSIS FOR CONTINUOUS RANDOM VARIABLES.  THE PRESENTATION 
INCLUDES A SUMMARY DESCRIPTION OF THE MAJOR TOPICS OF THIS FIELD.  A 
BRIEF DESCRIPTION OF MULTIVARIATE ANALYSIS FOR DISCRETE RANDOM 
VARIABLES IS INCLUDED IN ANOTHER PRESENTATION (ON STATISTICAL 
INFERENCE). 
 
A MAJOR FOCUS OF THE PRESENTATION IS TO COVER MATERIAL THAT IS 
NECESSARY TO AN UNDERSTANDING OF MULTIVARIATE TIME SERIES ANALYSIS. 
 
CONTINUOUS MULTIVARIATE ANALYSIS REQUIRES A BASIC KNOWLEDGE OF 
VECTOR AND MATRIX OPERATIONS, SOME OF WHICH HAS BEEN INCLUDED IN 
OTHER PRESENTATIONS.  THIS PRESENTATION SUMMARIZES THAT MATERIAL, 
AND THEN BUILDS ON IT. 
 
THE TOPICS COVERED IN THIS PRESENTATION ARE THE FOLLOWING: 
 

CLASSIFICATION OF MULTIVARIATE ANALYSIS METHODOLOGIES 
VECTOR AND MATRIX ALGEBRA RELATED TO CONTINUOUS MULTIVARIATE 
ANALYSIS 
SOLUTION OF EQUATIONS 
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THE GENERAL LINEAR STATISTICAL MODEL 
THE GENERALIZED LINEAR STATISTICAL MODEL 
OPTIMIZATION AND CONSTRAINED OPTIMIZATION 
SOME MULTIVARIATE DISTRIBUTIONS 
THE MULTIVARIATE GENERAL LINEAR MODEL 
MULTIVARIATE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE 
PRINCIPAL COMPONENTS ANALYSIS 
FACTOR ANALYSIS 
CANONICAL CORRELATION 
DISCRIMINANT ANALYSIS 
CLASSIFICATION ANALYSIS 
MULTIVARIATE TIME SERIES MODELS (SUMMARY) 

 
THERE ARE A LARGE NUMBER OF TEXTBOOKS COVERING THE SUBJECT OF 
MULTIVARIATE ANALYSIS.  A SELECTION OF THESE BOOKS IS THE FOLLOWING: 
 

Fienberg, Stephen E., The Analysis of Cross-Classified Categorical Data, The 
MIT Press, 1977 
 
Agresti, Alan, An Introduction to Categorical Data Analysis, Wiley, 1996 
 
Agresti, Alan, Categorical Data Analysis, Wiley, 1990 
 
Anderson, T. W., An Introduction to Multivariate Statistical Analysis, Wiley, 
1958 
 
Roy, S. N., Some Aspects of Multivariate Analysis, Asia Publishing House, 
1958 
 
Lawley, D. N., and A. E. Maxwell, Factor Analysis as a Statistical Method, 
Butterworths, 1963 
 
Harman, Harry H., Modern Factor Analysis 2nd ed. revised, University of 
Chicago Press, 1960 
 
Cooley, William W. and Paul R. Lohnes, Multivariate Data Analysis, Wiley, 
1971 
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Berridge, Damon M. and Robert Crouchley, Multivariate Generalized Linear 
Mixed Models Using R, CRC Press / Chapman & Hall, 2011 

 
MANY BOOKS CONTAIN SECTIONS DEALING WITH MULTIVARIATE APPLICATIONS 
WITHIN A LARGER SUBJECT AREA, SUCH AS: 
 

Rao, C. Radhakrishna Rao, Linear Statistical Inference and Its Applications, 
2nd ed., Wiley, 1965, 1973 
 
McCulloch, Charles E., Shayne R. Searle, and John M. Neuhaus, Generalized, 
Linear and Mixed Models, 2nd ed., Wiley, 2008 
 

MANY BOOKS INCLUDE APPENDICES THAT PRESENT SUMMARY DESCRIPTIONS OF 
MULTIVARIATE ANALYSIS AND RELATED VECTOR AND MATRIX ALGEBRA.  THESE 
INCLUDE: 

 
Tsay, Ruey S., Multivariate Time Series Analysis with R and Financial 
Applications, Wiley, 2014 
 
Lϋtkepohl, Helmut, New Introduction of Multiple Time Series Analysis, 
Springer, 2006 
 
Hamilton, James D., Time Series Analysis, Princeton University Press, 1994 
 
Greene, William H., Econometric Analysis 7th ed., Prentice Hall, 2012 

 

2. CLASSIFICATION OF THE PROBLEMS OF MULTIVARIATE ANALYSIS 

 
FIENBERG (OP. CIT.) PROVIDES A SUCCINCT CLASSIFICATION OF THE MAJOR 
CATEGORIES OF MULTIVARIATE ANALYSIS, CLASSIFIED BY WHETHER THE 
EXPLAINED AND EXPLANATORY VARIABLES OF AN APPLICATION ARE 
CONTINUOUS, DISCRETE, OR BOTH. 
 

 Explanatory Variables 
Categorical Continuous Mixed 
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Response 
Variables 

Categorical a b c 

Continuous d e f 
Mixed g h i 

 
APPLICATIONS IN CATEGORY a ARE CROSS-CLASSIFIED CATEGORICAL DATA 
PROBLEMS (MULTIDIMENSIONAL CONTINGENCY TABLES), AND ARE DEALT WITH 
IN TEXTS SUCH AS FIENBERG AND AGRESTI (OP. CIT.).  AN EXAMPLE OF THIS TYPE 
OF APPLICATION IS THE LOG-LINEAR MODEL, WHICH IS DISCUSSED IN A SEPARATE 
PRESENTATION (ON STATISTICAL INFERENCE).  FOR APPLICATIONS INVOLVING A 
SINGLE RESPONSE VARIABLE, THOSE IN CATEGORIES b AND c ARE DEALT WITH 
USING GENERALIZED LINEAR MODELS (SUCH AS LOGISTIC AND PROBIT MODELS). 
 
APPLICATIONS IN THE MIDDLE ROW OF THE TABLE (d, e, AND f) CORRESPOND TO 
THE STANDARD MODELS OF MULTIVARIATE ANALYSIS, INCLUDING MULTIVARIATE 
ANALYSIS OF VARIANCE (d), MULTIVARIATE REGRESSION ANALYSIS (e), AND 
MULTIVARIATE ANALYSIS OF COVARIANCE (OR REGRESSION ANALYSIS WITH 
CATEGORICAL (“DUMMY”) EXPLANATORY VARIABLES (f). 
 
APPLICATIONS IN THE LAST ROW OF THE TABLE ARE HANDLED BY MEANS OF 
SPECIALIZED MODELS.  EXAMPLES OF TECHNIQUES FOR ANALYZING SUCH 
PROBLEMS ARE PRESENTED IN BERRIDGE AND CROUCHLY (OP. CIT.). 
 
THIS PRESENTATION DEALS MAINLY WITH APPLICATIONS OF TYPE e (I.E., 
MULTIVARIATE PROBLEMS IN WHICH ALL VARIABLES ARE CONTINUOUS, 
WHETHER EXPLANATORY OR EXPLAINED). 
 
A COMMENT ON TERMINOLOGY.  CONFUSION OFTEN ARISES INVOLVING THE 
MEANING OF THE TERM “MULTIVARIATE.”  AN APPLICATION IS A MULTIVARIATE 
APPLICATION ONLY IF IT INVOLVES A JOINT DISTRIBUTION OF RANDOM 
VARIABLES THAT MAY NOT BE INDEPENDENT.  AN APPLICATION MAY INVOLVE 
MULTIPLE VARIABLES, EITHER RANDOM OR DETERMINISTIC, AND NOT BE A 
MULTIVARIATE APPLICATION.  FOR EXAMPLE, A REGRESSION ANALYSIS 
INVOLVING A SINGLE RESPONSE VARIABLE AND A NUMBER OF EXPLANATORY 
VARIABLES (EITHER RANDOM OR DETERMINISTIC) IS A “MULTIVARIABLE” 
PROBLEM, BUT IT IS NOT A MULTIVARIATE PROBLEM – IT IS A UNIVARIATE 
PROBLEM. 
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3. VECTOR AND MATRIX ALGEBRA RELATED TO CONTINUOUS MULTIVARIATE 

ANALYSIS 

 
THE SUBJECT OF VECTOR AND MATRIX ALGEBRA IS COVERED IN A COURSE IN 
LINEAR ALGEBRA.  THIS SECTION WILL DESCRIBE CONCEPTS OF VECTOR AND 
MATRIX ALGEBRA SUFFICIENT TO ENABLE AN UNDERSTANDING OF THE BASIC 
CONCEPTS OF CONTINUOUS MULTIVARIATE ANALYSIS. 
 
REFERENCE TEXTS ON VECTORS AND MATRICES INCLUDE THE FOLLOWING: 
 

Perlis, Sam, Theory of Matrices, Addison-Wesley, 1952 (reprinted by Dover, 
1991) 
 
Hadley, G, Linear Algebra, Addison-Wesley, 1961 
 
Schneider, Hans and George Phillip Barker, Matrices and Linear Algebra, 2nd 
ed. Holt, Reinhart and Winston, 1968 (Dover edition 1989) 
 
Searle, S. R. and W. H. Hausman, Matrix Algebra for Business and 
Economics, Wiley, 1970 
 
Graybill, Franklin A., Introduction to Matrices with Applications in Statistics, 
Wadsworth, 1969 

 
THE PRECEDING TEXTS ARE COMPREHENSIVE AND DETAILED.  FOR THE PURPOSES 
OF THIS PRESENTATION, THEY INCLUDE MUCH MORE INFORMATION THAN IS 
NEEDED.THE MATERIAL PRESENTED IN THE APPENDICES LISTED EARLIER ON 
MULTIVARIATE ANALYSIS IS SUFFICIENT (I.E., TO TSAY, HAMILTON, LÜTKEPOHL, 
AND GREENE).  THIS PRESENTATION IS SIMILAR TO BUT BRIEFER THAN THOSE 
SUMMARIES, PRESENTING THE MINIMAL AMOUNT OF THEORY REQUIRED FOR 
THIS PRESENTATION. 
 
AS MENTIONED, SOME BASIC MATERIAL ON VECTORS AND MATRICES IS 
PRESENTED IN OTHER PRESENTATIONS OF THIS SERIES (IN PARTICULAR, DAY 10 
ON SMALL-AREA ESTIMATION).  IN THE INTEREST OF CONTINUITY AND 
COMPLETENESS OF THIS PRESENTATION, SOME OF THAT MATERIAL IS REPEATED 
HERE. 
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A COLUMN VECTOR IS A VERTICAL ARRAY OF A SEQUENCE OF n ELEMENTS 
 

𝒙 = (
𝑥1
𝑥2
⋮

𝑥𝑛

). 

 
A ROW VECTOR IS A HORIZONTAL ARRAY OF A SEQUENCE OF n ELEMENTS 
 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛). 
 
IN THIS APPLICATION, THE ELEMENTS ARE SYMBOLS OR VARIABLES OR NUMBERS. 
 
VECTORS ARE INDICATED BY BOLDFACE OR UNDERLINED FONT.  A VECTOR 
CONSISTING OF ONE ELEMENT IS CALLED A SCALAR.  FOR EXAMPLE, x MAY 
DENOTE A SCALAR AND x AND x MAY DENOTE VECTORS. 
 
THE ELEMENT xi IS CALLED THE i-th COMPONENT OF x.  THE NUMBER OF 
COMPONENTS IN x IS VARIOUSLY CALLED THE DIMENSION OR SIZE OR LENGTH OF 
x.  (THE TERMS “LENGTH” AND “SIZE” HAVE DIFFERENT MEANINGS, TO BE 
DEFINED LATER.) 
 
THE TRANSPOSE OF A COLUMN VECTOR x, DENOTED BY x’ or xT IS THE ROW 
VECTOR OF LENGTH n, 𝒙′ = 𝒙𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑛) OR 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)′ =
(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇.  THE TRANSPOSE OF A ROW VECTOR IS DEFINED SIMILARLY. 
 
THE TERM “VECTOR” MAY REFER TO EITHER A COLUMN VECTOR OR A ROW 
VECTOR.  ABSENT AN EXPLICIT INDICATOR (PRIME OR “T”), AN ARBITRARY 
VECTOR IS ASSUMED TO BE A COLUMN VECTOR. 
 
A MATRIX X OF m ROWS AND n COLUMNS (AN “m by n” MATRIX) IS A 
RECTANGULAR ARRAY OF ELEMENTS: 
 

𝑋 = (

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

) = (𝒙1, 𝒙2, … , 𝒙𝑛) 
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WE SHALL DENOTE MATRICES STANDARD (NON-BOLDFACE) FONT.  (THIS IS NOT A 
UNIVERSAL CONVENTION – MOST AUTHORS WRITE VECTORS IN BOLDFACE, BUT 
MANY AUTHORS WRITE MATRICES IN BOLDFACE, ALSO.) 
 
IF xij DENOTES THE ELEMENT IN ROW i AND COLUMN j OF MATRIX X, THEN THE 
MATRIX X MAY BE DENOTED AS X = [xij].  IF WE WISH TO MAKE THE NUMBER OF 
ROWS AND COLUMNS EXPLICIT, WE WRITE X = [xij]mxn.  THE TRANSPOSE X’ (OR XT) 
IS DEFINED AS THE MATRIX HAVING ELEMENT xji IN ROW i AND COLUMN j.  THE 
ROWS AND THE COLUMNS OF A MATRIX ARE VECTORS.  A MATRIX HAVING JUST 
ONE ROW OR ONE COLUMN IS A VECTOR (OR, IF JUST ONE ROW AND ONE 
COLUMN, A SCALAR). 
 
IF A MATRIX HAS THE SAME NUMBER OF ROWS AS COLUMNS, IT IS CALLED 
SQUARE, AND THE NUMBER OF ROWS (OR COLUMNS) IS CALLED THE SIZE OR 
ORDER OF THE MATRIX. 
 
BASIC OPERATIONS ON MATRICES ARE THE FOLLOWING.  SUPPOSE THAT A = [aij] 
IS AN m x n MATRIX AND B = [bij] IS A p x q MATRIX. 
 
ADDITION: IF m=p AND n=q, THEN A + B = [aij + bij]mxn. 
SUBTRACTION: IF m=p AND n=q, THEN A - B = [aij - bij]mxn. 
SCALAR MULTIPLICATION: IF c IS A SCALAR, THEN cA = [caij]. 
MULTIPLICATION: AB = [∑ 𝑎𝑖𝑘𝑏𝑘𝑗]

𝑛
𝑘=1  where n=p. 

 
THE PRODUCT OF AN n BY m MATRIX A AND AN m BY k MATRIX B IS THE n  BY k 
MATRIX WHOSE i,j-th ELEMENT (I.E., ENTRY IN ROW i AND COLUMN j) IS THE 
VECTOR PRODUCT OF THE i-th ROW OF A AND THE j-th COLUMN OF B.  NOTE 
THAT THE PRODUCT IS DEFINED ONLY IF THE MATRICES ARE CONFORMABLE, I.E., 
THE NUMBER OF COLUMNS OF A IS EQUAL TO THE NUMBER OF ROWS OF B. 
 
SINCE VECTORS ARE MATRICES, THE PRECEDING DEFINITIONS APPLY TO VECTORS.  
FOR EXAMPLE, THE PRODUCT OF A SCALAR a AND A VECTOR x WHOSE i-th 
COMPONENT IS xi IS THE VECTOR WHOSE i-th COMPONENT is axi: a x’ = (ax1, 
ax2,…,axn). 
 
IF VECTORS a AND b ARE OF THE SAME LENGTH n, THE VECTOR PRODUCT (OR 
INNER PRODUCT) IS 𝒂′𝒃 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯+ 𝑎𝑛𝑏𝑛.  TWO VECTORS WHOSE 
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INNER PRODUCT IS ZERO ARE SAID TO BE ORTHOGONAL.  (THIS DEFINITION 
REFERS TO GEOMETRIC ORTHOGONALITY; IN STATISTICS, TWO RANDOM 
VECTORS ARE SAID TO BE ORTHOGONAL IF THEY ARE UNCORRELATED.) 
 
THE DIAGONAL (OR MAIN DIAGONAL OR PRINCIPAL DIAGONAL) OF A MATRIX IS 
THE VECTOR OF ELEMENTS FOR WHICH THE ROW INDEX EQUALS THE COLUMN 
INDEX. 
 
THE SQUARE MATRIX, I, SUCH THAT ALL OF THE DIAGONAL ELEMENTS EQUAL TO 
ONE AND ZEROS ELSEWHERE IS CALLED THE IDENTITY MATRIX, SINCE IA = A FOR 
ANY MATRIX A.  (IF I IS AN n x n MATRIX, IT IS DENOTED AS In IF IT IS DESIRED TO 
INDICATE ITS SIZE.) 
 
THE INVERSE OF A SQUARE MATRIX A IS A MATRIX B = A-1 SUCH THAT AB = I, IF IT 
EXISTS, IT IS UNIQUE, AND A-1 A = I.  IF THE INVERSE EXISTS, THE MATRIX IS 
CALLED NONSINGULAR OR INVERTIBLE. 
 
THE RANK, r, OF A MATRIX IS THE NUMBER OF LINEARLY INDEPENDENT ROWS OR 
COLUMNS (WHICH ARE EQUAL).  FOR A SQUARE MATRIX, IF r=n, THE MATRIX IS 
SAID TO BE OF FULL RANK, AND IT IS INVERTIBLE. 
 
A SYMMETRIC MATRIX IS A SQUARE MATRIX FOR WHICH xij = xji. 
 
EXAMPLES: 
 
THE MATRIX 

1 0
0 1

 

 
IS OF RANK 2.  ITS INVERSE IS THE SAME MATRIX. 
 
THE MATRIX 

1 1 2
1 2 1
0 −1 1

 

 
IS SINGULAR (NON-INVERTIBLE), SINCE THE THIRD ROW IS THE FIRST MINUS THE 
SECOND.  IT IS OF RANK 2. 
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THE MATRIX 

1 . 5 0
. 5 1 0
0 0 0

 

 
IS SINGULAR, AND OF RANK 2. 
 
IN MATRIX NOTATION, A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS, FOR 
EXAMPLE, 
 

y1 = a11 x1 + a12 x2 
y2 = a21 x1 + a22 x2 

 
MAY BE REPRESENTED AS 
 

y = A x 
 
WHERE y’ = (y1, y2), x’ = (x1, x2) AND A = (a1, a2) WHERE a1’ = (a11, a21) AND a2’ = 
(a12, a22). 
 
CONSIDER THE SYSTEM OF LINEAR EQUATIONS 
 
Ax = b 
 
WHERE A IS AN n x n MATRIX AND x AND b ARE VECTORS OF LENGTH n.  IT IS 
DESIRED TO DETERMINE NONZERO SOLUTIONS, x, TO THIS SYSTEM, WHICH ARE 
LINEAR COMBINATIONS OF THE COLUMNS OF A.  THERE ARE TWO CASED TO 
CONSIDER, DEPENDING ON WHETHER b IS ZERO OR NONZERO.  IF b IS ZERO, THE 
SYSTEM IS CALLED HOMOGENEOUS, AND IF b IS NONZERO THE SYSTEM IS CALLED 
NONHOMOGENEOUS. 
 
IF b = 0, THEN A SOLUTION EXISTS IF AND ONLY IF THERE EXISTS A LINEAR 
COMBINATION (I.E., Ab) OF THE COLUMNS OF A THAT IS EQUAL TO 0.  THAT IS, 
THERE IS A NONZERO SOLUTION TO THE SYSTEM IF AND ONLY IF A IS NOT OF 
FULL RANK, I.E., IS SINGULAR. 
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SUPPOSE THAT b IS NONZERO.  IT IS DESIRED TO DETERMINE CONDITIONS UNDER 
WHICH THE SYSTEM HAS SOLUTIONS FOR ALL NONZERO VECTORS b, NOT JUST 
FOR SOME VECTORS b.  IN THIS CASE, THERE IS A SOLUTION IF A IS INVERTIBLE, 
SINCE IN THAT CASE WE HAVE (PREMULTIPLYING BOTH SIDES OF THE 
SIMULTANEOUS EQUATIONS BY A-1),  
 
A-1Ax = A-1b 
 
OR 
 
x = A-1b. 
 
IF A IS NOT INVERTIBLE, THEN THERE IS NO MATRIX A-1 FOR WHICH A-1A = I, THAT 
IS, THERE IS NO MATRIX A-1 FOR WHICH A-1Ax = A-1b, I.E., NO MATRIX A-1 FOR 
WHICH x = A-1b.  THAT IS, THERE IS NO LINEAR COMBINATION OF THE COLUMNS 
OF A WHICH SATISFY THE SYSTEM OF EQUATIONS. 
 
IN SUMMARY, FOR b NOT EQUAL TO ZERO, THE SYSTEM HAS A NONZERO 
SOLUTION THAT MAY BE EXPRESSED AS A LINEAR COMBINATION OF THE 
COLUMNS OF A IF AND ONLY IF A IS NONSINGULAR.  THE SOLUTION IS x = A-1b. 
 
THE TRACE OF A MATRIX IS THE SUM OF ITS DIAGONAL ELEMENTS: IF A IS AN nxn 
MATRIX, THEN 𝑡𝑟(𝐴) = ∑ 𝑎𝑖𝑖

𝑛
𝑖=1 .  IT HOLDS THAT tr(A + C) = tr(A) + tr(C), tr(AC) = 

tr(CA) AND tr(A) = tr(A’) (WHERE THE MATRICES ARE ASSUMED CONFORMABLE). 
 
SUPPOSE THAT A IS AN nxn SQUARE MATRIX.  A NUMBER λ AND AN nx1 
NONZERO VECTOR b ARE A RIGHT EIGENVALUE AND EIGENVECTOR PAIR OF A IF 
Ab=λb.  THERE ARE UP TO n POSSIBLE EIGENVALUES FOR A.  THEY MAY BE 
COMPLEX NUMBERS, IN WHICH CASE THEY OCCUR IN CONJUGATE PAIRS.  
DENOTE THE n EIGENVALUES AS λi FOR i= 1,…,n.  THEN tr(A) = ∑ 𝜆𝑖

𝑛
𝑖=1 . 

 
THE DETERMINANT OF A MATRIX, A, DENOTED BY |A|, IS DEFINED AS |𝐴| =
∏ 𝜆𝑖

𝑛
𝑖=1 .  THE NOTATION det(A) IS ALSO COMMON FOR |A|. 

 
IT CAN BE SHOWN THA T THE DETERMINANT OF A MATRIX A = [aij] MAY BE 
CALCULATED AS THE SUM OF ALL PRODUCTS 
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(−1)𝑝𝑎1𝑖1 , … , 𝑎𝑚𝑖𝑚  

 
CONSISTING OF ONE ELEMENT FROM EACH ROW AND EACH COLUMN, WHERE p 
IS THE NUMBER OF INVERSIONS REQUIRED TO TRANSFORM THE PERMUTATION 
i1,…,im into 1,…,m.  FOR EXAMPLE, FOR THE 2x2 MATRIX A = [aij], THE 
DETERMINANT IS a11a22 – a12a21. 
 
SOME FEATURES OF DETERMINANTS ARE THE FOLLOWING, WHERE IT IS 
ASSUMED THAT ALL MATRICES ARE NONSINGULAR (INVERTIBLE): 
 

1. IF A AND B ARE n x n MATRICES, THEN |AB| = |A||B|. 
2. |A’| = |A|. 
3. |A-1| = 1/|A|. 

 
A MATRIX IS NONSINGULAR IF AND ONLY IF ALL OF ITS EIGENVALUES ARE 
NONZERO, I.E., ITS DETERMINANT IS NONZERO. 
 
ALL OF THE EIGENVALUES OF A SYMMETRIC MATRIX ARE REAL. 
 
THE RANK OF A MATRIX, A, IS THE NUMBER OF NONZERO EIGENVALUES OF THE 
SYMMETRIC MATRIX AA’. 
 
SINCE THE EIGENVALUE / EIGENVECTOR PAIR λ, b SATISFY 
 
Ab = λb, 
 
IT FOLLOWS THAT  
 
Ab – λIb = 0 
 
OR 
 
(A – λI)b = 0. 
 
FROM THE DISCUSSION EARLIER ABOUT SOLUTIONS TO A SYSTEM OF 
SIMULTANEOUS EQUATIONS, THIS SYSTEM HAS A SOLUTION ONLY IF THE MATRIX 
A – ΛI IS SINGULAR. 
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IF (A – λI) WERE NONSINGULAR, THEN WE COULDPREMULTIPLY THE PRECEDING 
EXPRESSION BY (A – λI)-1 AND OBTAIN b = 0.  BUT b IS ASSUMED TO BE NONZERO, 
HENCE (A – λI) MUST BE SINGULAR.  HENCE AN EIGENVALUE OF A IS A NUMBER λ 
SUCH THAT |A – λI| = 0. 
 
EIGENVALUES ARE ALSO CALLED CHARACTERISTIC VALUES OR CHARACTERISTIC 
ROOTS OR LATENT ROOTS, AND THE JUST-PRECEDING EQUATION IS CALLED THE 
CHARACTERISTIC EQUATION. 
 
EIGENVECTORS SPAN THE VECTOR SPACE SPANNED BY THE ROWS OR COLUMNS 
OF A MATRIX.  EIGENVALUES ARE MEASURES OF LENGTH ALONG EIGENVECTORS, 
AND THE DETERMINANT IS A MEASURE OF VOLUME.  FOR EXAMPLE, CONSIDER 
THE CASE OF AN n x n IDENTITY MATRIX.  THE EIGENVECTORS ARE UNIT VECTORS 
POINTING ALONG n ORTHOGONAL AXES.  THE LENGTH OF EACH EIGENVECTOR IS 
ONE (THE CORRESPONDING EIGENVALUE), AND THE PRODUCT OF ALL OF THE 
LENGTHS (EIGENVALUES) IS THE n-DIMENSIONAL VOLUME OF THE n-
DIMENSIONAL HYPERCUBE SPANNED BY THE n EIGENVECTORS. 
 
THERE ARE A NUMBER OF NUMERICAL METHODS FOR EVALUATING THE 
DETERMINANT AND FINDING THE EIGENVALUES AND EIGENVECTORS. 
 
DECOMPOSITION, OR FACTORING, OF SYMMETRIC MATRICES 
 
THE JORDAN CANONICAL FORM; JORDAN DECOMPOSITION 
 
LET A DENOTE AN n x n MATRIX WITH EIGENVALUES λ1,…,λn.  THEN THERE EXISTS 
A NONSINGULAR MATRIX P SUCH THAT 
 

𝑃−1𝐴𝑃 = [
Λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Λ𝑛

] = Λ 

 
OR 
 

𝐴 = 𝑃Λ𝑃−1 
 
WHERE 
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Λ𝑖 =

[
 
 
 
 
𝜆𝑖 1 0
0 𝜆𝑖 1

⋯
0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
1
𝜆𝑖]

 
 
 
 

 

 
THIS DECOMPOSITION OF A IS CALLED THE JORDAN DECOMPOSITION, OR THE 
JORDAN CANONICAL FORM.  (A DECOMPOSITION IS ALSO CALLED A FACTORING.) 
 
IF A MATRIX A HAS DISTINCT EIGENVALUES, THEN IT MAY BE DECOMPOSED AS 
 

𝐴 = 𝑇Λ𝑇−1 
 
A SYMMETRIC n x n REAL MATRIX A IS SAID TO BE POSITIVE DEFINITE IF xTAx IS 
POSITIVE FOR EVERY NON-ZERO COLUMN VECTOR x OF n REAL NUMBERS.   
ALTERNATIVELY, A SQUARE MATRIX A IS POSITIVE DEFINITE IF IT IS SYMMETRIC 
AND ALL EIGENVALUES ARE POSITIVE.  A SYMMETRIX REAL MATRIX A IS SAID TO 
BE POSITIVE SEMIDEFINITE IF xTAx IS NONNEGATIVE FOR EVERY NON-ZERO 
COLUMN VECTOR x OF n REAL NUMBERS. 
 
A TRIANGULAR MATRIX IS ONE HAVING ALL ZEROS ABOVE THE DIAGONAL (IN 
WHICH CASE IT IS CALLED A LOWER TRIANGULAR MATRIX) OR ALL ZEROS BELOW 
THE DIAGONAL (IN WHICH CASE IT IS CALLED AN UPPER TRIANGULAR MATRIX). 
 
THE CHOLESKI DECOMPOSITION 
 
IF A IS A POSITIVE DEFINITE n x n MATRIX, THEN THERE EXISTS A TRIANGULAR 
MATRIX (EITHER UPPER OR LOWER) P WITH POSITIVE MAIN DIAGONAL SUCH 
THAT 
 

𝑃−1𝐴𝑃′−1 = 𝐼𝑛 
 
OR 
 

𝐴 = 𝑃𝑃′. 
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IF P IS LOWER TRIANGULAR, THIS DECOMPOSITION IS CALLED A CHOLESKI 
DECOMPOSITION (OR CHOLESKI FACTORIZATION).  (IF P IS LOWER TRIANGULAR, 
THEN P’ IS UPPER TRIANGULAR.  IF P IS DENOTED BY L (FOR “LOWER”) AND P’ IS 
DENOTED BY U (FOR “UPPER”), THEN A = LU AND THE CHOLESKI DECOMPOSITION 
IS REFERRED TO AS THE “LU” DECOMPOSITION.) 
 
SINCE ALL OF THE EIGENVALUES ARE ASSUMED POSITIVE, THE SQUARE ROOT 
MAY BE TAKEN OF EACH.  IF WE DEFINE 
 

Λ−1/2 = [
√𝜆1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ √𝜆𝑛

] 

 
AND 
 

𝑄 = 𝑃Λ−1𝑃′ 
 
THEN 
 

𝑄𝑄 = 𝐴 
 
AND Q IS CALLED THE SQUARE ROOT OF A AND IS DENOTED AS A-1/2. 
 
IF A IS POSITIVE SEMIDEFINITE WITH RANK r < n, THEN THERE EXISTS A 
NONSINGULAR MATRIX P SUCH THAT 
 

𝑃−1𝐴𝑃′−1 = [
𝐼𝑛 0
0 0

] 

 
AND 
 

𝐴 = 𝑄𝑄′ 
 
WHERE 
 

𝑄 = 𝑃 [
𝐼𝑛 0
0 0

]. 
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IF x DENOTES AN n-COMPONENT VECTOR, THEN THE VARIANCE OF A VECTOR 
RANDOM VARIABLE x (DENOTED BY VAR(x) OR V(x) OR var(x)) IS DEFINED TO BE 
THE n BY n MATRIX Σ WHOSE ij-th ELEMENT IS COV(xi, xj).  THE i-th DIAGONAL 
ELEMENT IS THE VARIANCE OF xi.  (THE VARIANCE OF A VECTOR x IS ALSO CALLED 
THE VARIANCE MATRIX OR THE COVARIANCE MATRIX OR THE VARIANCE-
COVARIANCE MATRIX OR THE DISPERSION MATRIX.)  NOTE THAT A CORRELATION 
MATRIX IS SYMMETRIC.CORRELATION MATRICES OF FULL RANK ARE POSITIVE 
DEFINITE. 
 
IF x AND y DENOTE ANY TWO SCALAR RANDOM VARIABLES AND a DENOTES A 
SCALAR CONSTANT, THEN VAR(ax) = a2x AND VAR(x + y) = VAR(x) + VAR(y) + 2 
COV(x,y). 
 
IF a IS A SCALAR, WE HAVE V(ax) = a2V(x).  IF a IS A VECTOR OF LENGTH n, WE 
HAVE V(ax) = a V(x) a’.  IF A IS A MATRIX HAVING n COLUMNS, THEN V(Ax) = 
AV(x)A’.  IF A COVARIANCE MATRIX, Σ, IS OF FULL RANK, IT IS POSITIVE DEFINITE 
AND HAS A UNIQUE MATRIX SQUARE ROOT, DENOTED BY Σ1/2, SUCH THAT Σ1/2Σ1/2 
= Σ.  NOTE THATΣ-1 = Σ-1/2Σ-1/2. 
 
PARTITION OF A MATRIX 
 
A PARTITIONED MATRIX IS A MATRIX WHOSE ELEMENTS ARE MATRICES.  FOR 
EXAMPLE, IF A DENOTES AN m x n MATRIX, THEN THE MATRIX 
 

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
] 

 
IS A PARTITION OF MATRIX A INTO FOUR SUBMATRICES, WHERE THE NUMBER OF 
ROWS OF A SUBMATRIX IS THE SAME AS THAT OF A SUBMATRIX TO THE LEFT OR 
RIGHT, AND THE NUMBER OF COLUMNS OF A SUBMATRIX IS THE SAME AS THAT 
OF A SUBMATRIX ABOVE OR BELOW.  PARTITIONED MATRICES MAY BE ADDED 
AND MULTIPLIED AS IF THEY WERE COMPOSED OF SCALARS, AS LONG AS THE 
COMPONENTS OF THE SUM OR PRODUCT ARE CONFORMABLE. 
 
THE REFERENCED APPENDICES PRESENT A NUMBER OF PROPERTIES OF 
PARTITIONED MATRICES (I.E., EXPRESSIONS FOR INVERSES AND DETERMINANTS). 
 
THE STACKING (vec, vech) AND KRONECKER PRODUCT OPERATORS 
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IF A = [aij] IS AND m x n MATRIX AND B = [bij]IS  A p x q MATRIX, THEN THE 
KRONECKER PRODUCT (OR DIRECT PRODUCT) IF A AND B IS THE mp X nq MATRIX 
 

𝐴⨂𝐵 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚𝑎𝐵 ⋯ 𝑎𝑛𝑚𝐵

]. 

 
IFA = (a1,…,an) IS AN m x n MATRIX WITH m COLUMNS ai.  THE vec OPERATOR 
(THE STACKING OPERATOR) TRANSFORMS A INTO AN mn x 1 VECTOR BY 
STACKING THE COLUMNS: 
 

𝑣𝑒𝑐(𝐴) = [

𝑎1

⋮
𝑎𝑛

]. 

 
THE vech OPERATOR (THE HALF-STACKING OPERATOR) IS A STACKING OPERATOR 
THAT STACKS ONLY THE ELEMENTS ON OR BELOW THE MAIN DIAGONAL OF A 
SQUARE MATRIX.  FOR EXAMPLE: 
 

𝑣𝑒𝑐ℎ [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] =

[
 
 
 
 
 
𝑎11

𝑎21

𝑎31
𝑎22
𝑎32

𝑎33]
 
 
 
 
 

. 

 
A SUMMARY OF PROPERTIES OF THE vec, vech AND KRONECKER PRODUCT 
OPERATORS IS PRESENTED IN TSAY (OP. CIT.).  FOR EXAMPLE: 
 
vec(A + B) = vec(A) + vec(B) 
vec(AB) = (I ⨂A)vec(B) = (B’ ⨂ I)vec(A). 
 
VECTOR AND MATRIX DIFFERENTIATION 
 
LET y BE A (REAL-VALUED) FUNCTION OF A (REAL-VALUED) VARIABLE x, DENOTED 
BY y = y(x) OR y = f(X).  WE ASSUME THAT THE FUNCTION f(x) IS CONTINUOUS 
AND DIFFERENTIABLE, WITH DERIVATIVES DENOTED AS 
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𝑓′(𝑥) =
𝑑𝑦

𝑑𝑥
, 𝑓′′(𝑥) =

𝑑2𝑦

𝑑𝑥2
, … , 𝑓(𝑛)(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
…. 

 
A TAYLOR SERIES APPROXIMATION OF THE FUNCTION f ABOUT A POINT X0 IS 
DEFINED AS 
 

𝑓(𝑥) ≈ 𝑓(𝑥0) + ∑
1

𝑖!

𝑑𝑖𝑓(𝑥0)

𝑑(𝑥0)𝑖
(𝑥 − 𝑥0)𝑖

𝑝

𝑖=1
. 

 
FOR p=1 WE HAVE A LINEAR TAYLOR SERIES APPROXIMATION: 
 

𝑓(𝑥) ≈ [𝑓(𝑥0) − 𝑓′(𝑥0)𝑥0] + 𝑓′(𝑥0)𝑥. 
 
NOW, LET y = f(x) BE A (REAL-VALUED) FUNCTION OF A VECTOR x.  THE GRADIENT 
VECTOR, OR GRADIENT OF y IS THE VECTOR OF PARTIAL DERIVATIVES: 
 

𝜕𝑓(𝒙)

𝜕𝒙
= [

𝜕𝑦/𝜕𝑥1

𝜕𝑦/𝜕𝑥2

⋮
𝜕𝑦/𝜕𝑥𝑛

]. 

 
THE VECTOR SHAPE OF A DERIVATIVE (ROW OR COLUMN) IS THE SAME AS THAT 
OF THE DENOMINATOR OF THE DERIVATIVE. 
 
THE SECOND DERIVATIVES MATRIX, OR HESSIAN, IS DEFINED AS 
 

𝐻 = [
𝜕2𝑦/𝜕𝑥1𝜕𝑥2 ⋯ 𝜕2𝑦/𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑦/𝜕𝑥𝑛𝜕𝑥2 ⋯ 𝜕2𝑦/𝜕𝑥𝑛𝜕𝑥𝑛

]. 

 
IT FOLLOWS THAT 
 

𝐻 =
𝜕2𝑦

𝜕𝒙𝜕𝒙′
. 

 
FORMULAS AND RESULTS FROM ORDINARY (NON-VECTOR) DIFFERENTIATION 
HAVE ANALOGS IN VECTOR DIFFERENTIATION.  THE FOLLOWING ARE SOME 
EXAMPLES. 
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IF a AND x ARE VECTOR (OF THE SAME LENGTH), THEN 
 

𝜕𝒂′𝒙

𝜕𝒙
= 𝒂(𝑛𝑜𝑡𝑒: 𝑛𝑜𝑡 𝒂′). 

 
IF y AND x ARE VECTORS OF LENGTH n AND A IS AN n x n MATRIX, THEN 
 

𝜕𝐴𝒙

𝜕𝒙
= 𝐴′ 

 
AND 
 

𝜕(𝒙′𝐴𝒙)

𝜕𝒙
= (𝐴 + 𝐴′)𝒙. 

 
IF A IS SYMMETRIC, THEN THIS LAST EXPRESSION BECOMES 
 

𝜕(𝒙′𝐴𝒙)

𝜕𝒙
= 2𝐴𝒙. 

 
FOR MATRIX A = [aij], WE DEFINE 
 

𝜕𝑓

𝜕𝐴
= [

𝜕𝑓

𝜕𝑎𝑖𝑗
] 

 
AND 
 

𝜕𝐴

𝜕𝑥
= [

𝜕𝑎𝑖𝑗

𝜕𝑥
] (𝑓𝑜𝑟 𝑠𝑐𝑎𝑙𝑎𝑟 𝑥). 

 
THEN WE HAVE 
 

𝜕(𝒙′𝐴𝒙)

𝜕𝐴
= 𝒙𝒙′. 
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CHAIN RULE.  LET y BE AN n x 1 VECTOR AND x BE AN m x 1 VECTOR.  SUPPOSE 
THAT y = g(x).  SUPPOSE THAT h(.) IS A p x 1 VECTOR OF FUNCTIONS gi(.) OF x.  
THEN 
 

𝜕𝒉[𝒈(𝒙)]

𝜕𝒙′
=

𝜕𝒉(𝒚)

𝜕𝒚′

𝜕𝒈(𝒙)

𝜕𝒙′
. 

 
THERE ARE ALSO ANALOGOUS DIFFERENTIATION PRODUCT RULES (PRESENTED IN 
APPENDIX A OF TSAY (OP. CIT.). 
 
OPTIMIZATION 
 
CONSIDER THE PROBLEM OF FINDING A LOCAL EXTREME VALUE (OPTIMUM; 
MINIMUM OR MAXIMUM) VALUE OF A (REAL-VALUED) DIFFERENTIABLE 
FUNCTION f(x) OF A REAL VARIABLE x. 
 
A NECESSARY CONDITION FOR A LOCAL OPTIMUM IS 
 

𝑑𝑦

𝑑𝑥
= 0. 

 
A SUFFICIENT CONDITION FOR A LOCAL OPTIMUM IS 
 

𝑑2𝑦

𝑑𝑥2
< 0 𝑓𝑜𝑟 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

 
𝑑2𝑦

𝑑𝑥2
> 0 𝑓𝑜𝑟 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚. 

 
FOR A FUNCTION f(x) OF SEVERAL VARIABLES (I.E., OF A VECTOR x), THE 
NECESSARY CONDITION IS 
 

𝑑𝑓(𝒙)

𝑑𝒙
= 𝟎, 

 
AND THE SUFFICIENT CONDITION IS THAT 
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𝐻 =
𝜕2𝑓(𝒙)

𝜕𝒙𝜕𝒙′
 

 
BE POSITIVE DEFINITE FOR A MINIMUM AND NEGATIVE DEFINITE FOR A 
MAXIMUM. 
 
IN GENERAL, IT IS NECESSARY TO DETERMINE THE EIGENVALUES OF H TO 
DETERMINE WHETHER IT IS POSITIVE DEFINITE OR NEGATIVE DEFINITE.  IF, 
HOWEVER, H HAS THE FORM H = A’A WHERE A IS A KNOWN MATRIX OF FULL 
RANK, THEN IT IS POSITIVE DEFINITE.  (THIS RESULT IS USEFUL IN LEAST-SQUARES 
ESTIMATION, SUCH AS REGRESSION ANALYSIS.) 
 
CONSTRAINED OPTIMIZATION 
 
CONSIDER THE PROBLEM OF MAXIMIZING THE FUNCTION DIFFERENTIABLE f(x) OF 
A REAL VARIABLE x, SUBJECT TO THE CONSTRAINT c(x)=0.  THIS PROBLEM MAY BE 
SOLVED BY THE METHOD OF LAGRANGE MULTIPLIERS.  A SOLUTION SATISFIES 
THE CONDITION THAT THE DERIVATIVES OF THE LAGRANGIAN FUNCTION 
 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑐(𝑥) 
 
WITH RESPECT TO x AND λ BE ZERO.  THAT IS: 
 

𝜕𝐿(𝑥, 𝜆)

𝜕𝑥
=

𝜕𝑓

𝜕𝑥
− 𝜆

𝜕𝑐(𝑥)

𝜕𝑥
= 0 

 
𝜕𝐿(𝑥, 𝜆)

𝜕𝜆
= 𝑐(𝑥) = 0. 

 
THE PARAMETER λ IS CALLED A LAGRANGE MULTIPLIER. 
 
FOR MULTIPLE CONSTRAINTS, c1(x)=0, …, cp(x)=0, THERE ARE MULTIPLE 
LAGRANGE MULTIPLIERS, λ1,…,λp, AND, DENOTING c(x) = [ci(x)] AND λ= [λi], THE 
LAGRANGIAN FUNCTION IS 
 

𝐿(𝑥, 𝝀) = 𝑓(𝑥) − ∑ 𝜆𝑗𝑐𝑗(𝑥)
𝑝

𝑗=1
= 𝑓(𝑥) − 𝝀′𝒄(𝑥). 
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TO FIND THE CONSTRAINED OPTIMUM, THE DERIVATIVES WITH RESPECT TO x 
AND ALL OF THE λi ARE SET EQUAL TO ZERO. 
 
FOR THE MULTIDIMENSIONAL CASE OF A VECTOR x, THE CONDITIONS ARE 
ANALOGOUS.  THE FUNCTION TO BE OPTIMIZED IS STILL A REAL-VALUED (SCALAR) 
FUNCTION – THE ONLY VECTOR IS THE ARGUMENT x.  THE LAGRANGIAN 
FUNCTION IS 
 

𝐿(𝒙, 𝝀) = 𝑓(𝒙) − 𝝀′𝒄(𝒙). 
 
IN THE VECTOR CASE, THE OPTIMAL SOLUTION SATISFIES THE EQUATIONS 
 

𝜕𝐿(𝒙, 𝝀)

𝜕𝒙
=

𝜕𝑓(𝒙)

𝜕𝒙
+

𝜕𝝀′𝒄(𝒙)

𝜕𝒙
= 𝟎 

 
𝜕𝐿(𝒙, 𝝀)

𝜕𝝀
= 𝒄(𝒙) = 𝟎. 

 
THE SECOND TERM IN THE FIRST EQUATION ABOVE IS 
 

𝜕𝝀′𝒄(𝒙)

𝜕𝒙
=

𝜕𝒄′(𝒙)𝝀

𝜕𝒙
= [

𝜕𝒄′(𝒙)

𝜕𝒙
] 𝝀 = 𝐶′𝝀 

 
WHERE C DENOTES THE MATRIX OF DERIVATIVES OF THE CONSTRAINTS WITH 
RESPECT TO x. 
 
LEAST-SQUARES ESTIMATION (THE GENERAL LINEAR STATISTICAL MODEL) 
 
PERHAPS THE MOST WIDELY USED OF ALL STATISTICAL ESTIMATION METHODS IS 
THE METHOD OF LEAST SQUARES, AND IN PARTICULAR, THE METHOD OF LEAST 
SQUARES APPLIED TO A LINEAR MODEL. 
 
IN THE METHOD OF LEAST SQUARES, THE MODEL ESTIMATES ARE TAKEN TO BE 
THOSE VALUES THAT MINIMIZE THE SUM OF SQUARES OF THE DEVIATIONS 
BETWEEN THE OBSERVED VALUES OF A RANDOM VARIABLE AND THE VALUES 
PREDICTED BY THE MODEL, I.E., THAT MINIMIZE THE MODEL ERRORS OF 
ESTIMATION. 
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UNIVARIATE LINEAR STATISTICAL MODEL 
 
IN THE UNIVARIATE CASE, A LINEAR STATISTICAL MODEL IS DEFINED AS 
 
y = Xβ + e 
 
WHERE y = (y1, …, yn)’ DENOTES AN n x 1 VECTOR OF n OBSERVED VALUES OF A 
RESPONSE VARIABLE, β= (β1,…,βp)’ DENOTES A p x 1 VECTOR OF PARAMETERS (TO 
BE ESTIMATED), X DENOTES AN n x p MATRIC OF n OBSERVATIONS ON A SET OF p 
EXPLANATORY VARIABLES, 
 

𝑋 =  [

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

] = [
𝒙′1
⋮

𝒙′𝑛

] 

 
AND e = (e1,…,en)’ DENOTES AN n x 1 VECTOR OF MODEL ERROR TERMS.  IN THE 
SIMPLEST CASE IT IS ASSUMED THAT THE MODEL ERROR TERMS ARE 
UNCORRELATED WITH COMMON VARIANCE σ2. 
 
FOR THE i-th OBSERVATION, THE MODEL IS 
 
yi = x’iβ + ei. 
 

LET �̂� DENOTE AN ESTIMATE OF THE PARAMETER β, AND 
 

�̂�𝑖 = �̂�(𝒙𝒊) = 𝒙′𝑖�̂� 
 
DENOTE THE ESTIMATE OF y CORRESPONDING THE VALUE xi OF THE 
EXPLANATORY VARIABLES.  THEN THE ESTIMATED MODEL ERROR TERM, OR 
MODEL RESIDUAL, FOR THE i-th OBSERVATION IS �̂� = �̂�𝑖 − 𝑦𝑖 .  USING THE 

METHOD OF LEAST SQUARES, THE GOAL IS TO DETERMINE �̂� SO THAT THE SUM 
OF SQUARES OF THE RESIDUALS IS MINIMIZED. 
 
THAT IS, MINIMIZE 
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∑ �̂�2 = (�̂�𝑖 − 𝑦)2
𝑛

𝑖=1
 

 
OR, IN VECTOR NOTATION, MINIMIZE 
 

(𝒚 − 𝑋𝜷)′(𝒚 − 𝑋𝜷) = 𝒚′𝒚 − 𝜷′𝑋′𝒚 − 𝑦′𝑋𝜷 + 𝜷′𝑋′𝑋𝜷
= 𝒚′𝒚 − 2𝒚′𝑋𝜷 + 𝜷′𝑋′𝑋𝜷 . 

 
THE DERIVATIVE OF THIS EXPRESSION WITH RESPECT TO β IS 
 

𝑋′𝒚 + 2𝑋′𝑋𝜷. 
 

SETTING THIS EQUAL TO ZERO AND DENOTING THE SOLUTION BY �̂� PRODUCES 
 

𝑋′𝑋�̂� = 𝑋′𝒚. 
 
IF XX’ IS INVERTIBLE, PREMULTIPLYING BOTH SIDES OF THIS EQUATION BY (X’X)-

1YIELDS 
 

�̂� = (𝑋′𝑋)−1𝑋′𝒚. 
 
THE GENERAL LINEAR MODEL, UNIVARIATE CASE 
 
IN THE PRECEDING MODEL, THE MODEL ERROR TERMS WERE ASSUMED TO BE 
UNCORRELATED.  THIS ASSUMPTION HOLDS, FOR EXAMPLE, IF THE 
OBSERVATIONS ARE SAMPLED INDEPENDENTLY.  IN MANY APPLICATIONS, THE 
ASSUMPTION OF UNCORRELATEDNESS DOES NOT APPLY.  FOR EXAMPLE, IN 
PANEL SAMPLING OBSERVATIONS TAKEN ON THE SAME HOUSEHOLD AT 
DIFFERENT TIMES WILL BE CORRELATED; OR OBSERVATIONS IN THE SAME 
SAMPLE-SURVEY CLUSTER (FIRST STAGE SAMPLE UNIT) OR STRATUM MAY BE 
CORRELATED. 
 
ALSO, IN MANY APPLICATIONS THE VARIANCE OF THE MODEL ERROR TERMS IS 
ASSUMED TO BE THE SAME FOR ALL OBSERVATIONS.  IN MANY APPLICATIONS 
THIS ASSUMPTION IS NOT REASONABLE. 
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SUPPOSE, IN GENERAL, THAT THE VARIANCE MATRIX OF THE MODEL ERROR 
TERMS IS Σ, AND THAT IT IS OF FULL RANK.  THEN, AS DISCUSSED EARLIER, THE 
SQUARE ROOT MATRIX Σ1/2 IS DEFINED, SUCH THAT Σ1/2Σ1/2 = Σ AND Σ-1/2Σ1/2= I.  
THE TRANSFORMED VARIATE Z = Σ-1/2Y HAS VARIANCE I. 
 
IF THE MODEL IS 
 
y = Xβ + e 
 
WHERE var(e) = Σ 
 
THEN THE MODEL 
 
z = Σ-1/2y = Σ-1/2Xβ + Σ-1/2e 
 
SATISFIES THE CONDITIONS FOR THE LINEAR STATISTICAL MODEL HAVING 
UNCORRELATED MODEL ERROR TERMS, AND THE LEAST-SQUARES ESTIMATES OF 
THE PARAMETERS ARE 
 

�̂� = ((Σ−1/2𝑋)′(Σ−1/2𝑋))−1(Σ−1/2𝑋)′𝚺−1/2𝒚 
 
OR 
 

�̂� = (𝑋′Σ−1𝑋)−1𝑋′Σ−1𝒚. 
 
THIS VERSION OF THE LINEAR STATISTICAL MODEL, WITH ARBITRARY VARIANCE 
MATRIX FOR THE MODEL ERROR TERMS, IS CALLED THE GENERAL LINEAR 
STATISTICAL MODEL (FOR THE UNIVARIATE CASE), OR SIMPLY THE GENERAL 
LINEAR MODEL, WITH THE WORD “STATISTICAL” UNDERSTOOD.  THIS GENERAL 
CASE IS ALSO REFERRED TO AS THE METHOD OF WEIGHTED LEAST SQUARES. 
 
MULTIVARIATE LINEAR STATISTICAL MODEL 
 
THE MULTIVARIATE EXTENSION OF THE GENERAL LINEAR MODEL IS 
STRAIGHTFORWARD.  THE MODEL IS 
 

𝑍 = 𝑋Β + 𝐸 
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WHERE Z IS AN n x m MATRIX, X IS AN n x p MATRIX, B IS A p x m MATRIX, AND E 
IS AN n x m MATRIX.  IN THIS FORMAT, THE n MULTIVARIATE OBSERVATIONS ARE 
THE n ROWS OF Z. 
 
TO CAST THIS MODEL IN THE FORMAT JUST PRESENTED FOR THE UNIVARIATE 
CASE, THE COLUMNS OF Z ARE STACKED, YIELDING: 
 

𝑣𝑒𝑐(𝑍) = (𝐼 ⊗ 𝑋)𝑣𝑒𝑐(𝐵) + 𝑣𝑒𝑐(𝐸). 
 
IN THIS FORM, THE MODEL HAS THE SAME STRUCTURE AS THE GENERAL LINEAR 
MODEL.  NOTE THAT THERE ARE TWO TYPES OF COVARIANCES: THOSE AMONG 
THE m COMPONENT VARIABLES OF Z (CORRESPONDING TO THE COLUMNS OF Z), 
AND THOSE AMONG THE n SAMPLE OBSERVATIONS (CORRESPONDING TO THE 
ROWS OF Z).  IT IS CLEAR TO SEE THAT THIS MODEL ALLOWS FOR AN EXTREMELY 
LARGE NUMBER OF PARAMETERS.  A MAJOR PROBLEM IN ESTIMATION FOR THIS 
LINEAR MODEL IS THE IMPOSITION OF RESTRICTIONS TO REDUCE THE NUMBER 
OF PARAMETERS. 
 
IF THERE IS NO CORRELATION AMONG SAMPLE OBSERVATIONS, THEN 
THEVARIANCE MATRIX OF vec(E) IS Σ𝑒 ⊗ 𝐼𝑛, WHERE Σe DENOTES THE VARIANCE 
MATRIX AMONG THE COMPONENT VARIABLES OF THE MULTIVARIATE VECTOR.  
IN THIS CASE IT MAY BE SHOWN THAT THE LEAST-SQUARES ESTIMATES ARE 
 

�̂� = (𝑋′𝑋)−1(𝑋′𝑍). 
 
NOTE THAT THIS EXPRESSION DOES NOT DEPEND ON Σe. 

4. SOME PARTICULAR MULTIVARIATE DISTRIBUTIONS 

 
GIVEN TWO DISCRETE RANDOM VARIABLES X AND Y, THE JOINT PROBABILITY 
FUNCTION IS DEFINED AS 
 

fX,Y(x,y) = f(x,y) = P(X=x and Y=y) = P(X=x,Y=y). 
 
GIVEN TWO CONTINUOUS RANDOM VARIABLES X AND Y, A FUNCTION f(x,y) IS A 
JOINT PROBABILITY DENSITY FUNCTION (PDF) IF 
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f(x,y)≥0 for all (x,y) 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1
∞

−∞

∞

−∞
 and 

for any set A⊂R x R, P((X,Y)єA = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦.
𝐴

 

 
(RECALL THAT R DENOTES THE REAL LINE.) 
 
IN BOTH THE DISCRETE AND CONTINUOUS CASES, THE JOINT CDF IS DEFINED AS 
 

FX,Y(x,y) = P(X≤x, Y≤Y) 
 
THE PRECEDING DEFINITION DEFINES A JOINT DISTRIBUTION IN THE CASE OF 
TWO RANDOM VARIABLES.  SUCH A DISTRIBUTION IS CALLED A BIVARIATE 
DISTRIBUTION.  THIS DEFINITION MAY BE EXTENDED TO THE CASE OF MORE 
THAN TWO RANDOM VARIABLES.  FOR EXAMPLE, GIVEN THREE DISCRETE 
RANDOM VARIABLES X, Y AND Z, THE JOINT PROBABILITY FUNCTION IS DEFINED 
AS 
 

fX,Y,Z(x,y,z) = f(x,y,z) = P(X=x and Y=y and Z=z) = P(X=x,Y=y,Z=z). 
 
 A PROBABILITY DISTRIBUTION OF MORE THAN ONE RANDOM VARIABLE IS 
CALLED A MULTIVARIATE DISTRIBUTION.  WHEN DEALING WITH MULTIVARIATE 
DISTRIBUTIONS IN GENERAL, IT IS MORE COMMON TO USE SUBSCRIPTED 
VARIABLE NAMES, SUCH AS x1, x2, x3,… or y1, y2, y3,… THAN SEQUENTIAL NAMES, 
SUCH AS x, y, z,….  IF SOME OF THE RANDOM VARIABLES ARE RESPONSE 
VARIABLES AND THE OTHERS ARE EXPLANATORY VARIABLES, DIFFERENT LETTERS 
MAY BE USED, SUCH AS y1, y2, y3,… FOR THE RESPONSE VARIABLES AND x1, x2, x3,… 
FOR THE EXPLANATORY VARIABLES. 
 
MULTINOMIAL DISTRIBUTION 
 
THE BINOMIAL DISTRIBUTION IS THE DISTRIBUTION OF THE NUMBER OF 
OCCURRENCES IN EACH OF TWO CATEGORIES, WHERE THE TOTAL SAMPLE SIZE IS 
FIXED (n).   
 
THE PROBABILITY MASS FUNCTION FOR THE BINOMIAL DISTRIBUTION IS 
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𝑓(𝑥) = {
(
𝑛
𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
NOTATION X ~ Binomial(n,p). 
 
THE CUMULATIVE DISTRIBUTION FUNCTION FOR THE BINOMIAL DISTRIBUTION IS: 
 

𝐹(𝑥) = ∑ (
𝑛
𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥

𝑥

𝑖=0
 

 
THE EXTENSION TO MORE THAN TWO CATEGORIES IS DESCRIBED BY THE 
MULTINOMIAL DISTRIBUTION. 
 
MULTINOMIAL DISTRIBUTION (CASELLA AND BURGER): LET n AND m BE POSITIVE 
INTEGERS AND LET p1,..., pn BE NUMBERS SATISFYING 0 ≤ pi ≤1, i = 1,...,n AND ∑pi 
= 1.  A RANDOM VECTOR (X1,...,Xn) HAS A MULTINOMIAL DISTRIBUTION WITH m 
TRIALS AND CELL PROBABILITIES p1,..., pn IF ITS JOINT PROBABILITY MASS 
FUNCTION IS 
 

𝑓(𝑥1, … , 𝑥𝑛) =
𝑚!

𝑥1! … 𝑥𝑛!
𝑝1

𝑥1 …𝑝𝑛
𝑥𝑛 = 𝑚!∏

𝑝𝑖
𝑥𝑖

𝑥𝑖!

𝑛

𝑖=1
 

 
ON THE SET OF (x1,...,xn) SUCH THAT EACH xi IS A NONNEGATIVE INTEGER AND ∑xi 
= m. 
 
AN EXAMPLE OF A MULTINOMIAL DISTRIBUTION IS THE NUMBER OF COUNTS IN 
EACH CELL OF A CROSSTABULATION, WHERE m IS THE TOTAL NUMBER OF 
COUNTS. 
 
IT IS NOTED THAT ALTHOUGH THE MULTINOMIAL DISTRIBUTION IS DISCRETE, THE 
METHODS OF CONTINUOUS DISTRUBUTION THEORY ARE OFTEN APPLIED TO 
PROBLEMS INVOLVING THIS DISTRIBUTION, SUCH AS IN THE CASE OF USING A 
GENERALIZED LINEAR STATISTICAL MODEL (IN WHICH CASE THE DISTRIBUTION IS 
REPRESENTED BY AN UNDERLYING CONTINUOUS MULTIVARIATE DISTRIBUTION 
AND A LINK FUNCTION). 
 
MULTIVARIATE NORMAL DISTRIBUTION 
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THE UNIVARIATE NORMAL (GAUSSIAN) DISTRIBUTION HAS DENSITY FUNCTION 
 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 {−

1

2𝜎2
(𝑥 − 𝜇)2} , 𝑥𝜖𝑅, , 𝑤ℎ𝑒𝑟𝑒 𝜇𝜖𝑅 𝑎𝑛𝑑 𝜎 > 0.  

 
NOTATION X ~ N(μ, σ2). 
 
AND DISTRIBUTION FUNCTION 
 

𝐹(𝑥∗) = ∫
1

𝜎√2𝜋
𝑒𝑥𝑝 {−

1

2𝜎2
(𝑥 − 𝜇)2} 𝑑𝑥.

𝑥∗

−∞

 

 
THIS DISTRIBUTION IS DENOTED AS N(μ,σ2) (I.E., IF X HAS A NORMAL 
DISTRIBUTION WITH PARAMETERS μ AND σ, X~N(μ,σ2)).  THERE IS NO CLOSED-
FORM EXPRESSION FOR F(x*).  THE MEAN OF THE DISTRIBUTION IS μ AND THE 
VARIANCE IS σ2.  IF μ=0 AND σ2=1, THE DISTRIBUTION IS CALLED A STANDARD 
NORMAL DISTRIBUTION.  IF x~N(μ,σ2) THEN Z = (X – μ)/σ ~N(0,1). 
 
THE PROBABILITY DENSITY FUNCTION OF A STANDARDIZED NORMAL RANDOM 
VARIABLE z IS DENOTED BY φ(z) AND THE CDF IS DENOTED BY Φ(z).  TABLES OF 
φ(z) AND Φ(z) ARE INCLUDED IN MOST STATISTICS TEXTS. 
 
LET -∞ <μX< ∞, -∞ <μY< ∞, 0 <σX, 0 <σY AND -1 < ρ <1 BE FIVE REAL NUMBERS.  
THE BIVARIATE NORMAL PDF WITH MEANS μX AND μY, VARIANCES σX

2 AND σY
2 

AND CORRELATION ρ IS 
 

𝑓(𝑥, 𝑦) = (2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌2)−1𝑒𝑥𝑝 (−
1

2(1 − 𝜌2)
((

𝑥 − 𝜇𝑋

𝜎𝑋
)
2

− 2𝜌 (
𝑥 − 𝜇𝑋

𝜎𝑋
) (

𝑦 − 𝜇𝑌

𝜎𝑌
) + (

𝑦 − 𝜇𝑌

𝜎𝑌
)
2

))  𝑓𝑜𝑟 − ∞ < 𝑥

< ∞ 𝑎𝑛𝑑 − ∞ < 𝑦 < ∞. 
 
NOTE THAT IF WE DEFINE THE VECTORS 
 

𝒙 = (𝑥, 𝑦)′ 



30 
 

 
AND 
 

𝝁 = (𝜇𝑋, 𝜇𝑌)′ 
 
AND THE MATRIX 
 

Σ = [
𝜎𝑋𝑋 𝜎𝑋𝑌

𝜎𝑋𝑌 𝜎𝑌𝑌
] = [

𝜎𝑥
2 𝜎𝑋𝑌

𝜎𝑋𝑌 𝜎𝑌
2 ] 

 
WHERE 𝜎𝑋𝑌 = 𝜌𝜎𝑋𝜎𝑌, THEN WE MAY WRITE THE BIVARIATE NORMAL DENSITY 
µFUNCTION IN VECTOR/MATRIX NOTATION AS 
 

𝑓(𝒙; 𝝁, Σ) = (2𝜋)−1|Σ|−1/2𝑒−1
2
(𝒙−𝝁)′Σ−1(𝒙−𝝁) 

 
WHERE 
 

|Σ| = 𝜎𝑋
2𝜎𝑌

2(1 − 𝜌2) 
 
DENOTES THE DETERMINANT OF THE MATRIX Σ. 
 
THE QUANTITIES µX AND µY ARE THE MEANS OF X AND Y; 𝜎𝑋

2 IS THE VARIANCE OF 
X;𝜎𝑌

2 IS THE VARIANCE OF Y; AND 𝜎𝑋𝑌
2  IS THE COVARIANCE OF X AND Y.  

 
THE NORMAL DISTRIBUTION MAY BE EXTENDED TO AN ARBITRARY NUMBER OF 
JOINTLY DISTRIBUTED RVs.  FOR MORE THAN TWO RVs, MATRIX NOTATION IS 
USED. 
 
A VECTOR X = (X1,...,Xk) HAS A MULTIVARIATE NORMAL DISTRIBUTION, DENOTED 
AS X ~ N(μ,∑), IF ITS DENSITY FUNCTION IS 
 

𝑓(𝒙; 𝝁, 𝚺) =
1

2𝜋𝑘/2|𝚺|1/2
𝑒𝑥𝑝 {−

1

2
(𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)} 

 
WHERE μ IS A VECTOR OF LENGTH k AND ∑ IS A k x k SYMMETRIC POSITIVE 
DEFINITE MATRIX. THE VECTOR μ IS THE VECTOR OF MEANS, [E(Xi)], AND THE 
MATRIX ∑ IS THE MATRIX OF COVARIANCES, [E(Xi – E(Xi))(Xj – E(Xj))].  THAT IS, 
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𝝁 = 𝐸(𝑿) 

 
AND 
 

Σ = 𝑐𝑜𝑣(𝑿,𝑿′) = 𝐸(𝑿 − 𝝁)(𝑿 − 𝝁)′ = [𝐸(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]. 

5. MULTIVARIATE TECHNIQUES WHEN THE POPULATION PARAMETERS 

ARE KNOWN 

 
THIS SECTION DESCRIBES MAJOR TOPICS IN MULTIVARIATE ANALYSIS, WHEN THE 
POPULATION DISTRIBUTION IS A KNOWN MULTIVARIATE NORMAL DISTRIBUTION, 
I.E., THE MEAN µ AND THE COVARIANCE MATRIX Σ ARE KNOWN. 
 
MANY OF THE PROBAILITY DISTRIBUTIONS THAT ARISE IN NORMAL-BASED 
MULTIVARIATE ANALYSIS ARE THE SAME ONES (SUCH AS CHI-SQUARED AND 
FISHER’S F) THAT OCCUR IN UNIVARIATE ANALYSIS.  THESE DISTRIBUTIONS HAVE 
BEEN DISCUSSED IN ANOTHER PRESENTATION, AND THAT DISCUSSION IS NOT 
REPEATED HERE. 
 
THIS PRESENTATION IS A SURVEY OF MULTIVARIATE ANALYSIS, PRESENTING 
BASIC INFORMATION IN SUMMARY FORM, AND OMITTING MATHEMATICAL 
PROOFS.  FOR A COMPLETE, DETAILED DISCUSSION OF MULTIVARIATE ANALYSIS, 
SEE THE BOOK BY ANDERSON (OP. CIT.). 
 

MARGINAL AND CONDITIONAL DISTRIBUTIONS; DISTRIBUTION OF LINEAR 

COMBINATIONS 

 
SOME OF THE BASIC PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION 
ARE THE FOLLOWING: 
 

1. THE MARGINAL DISTRIBUTION OF ONE OR MORE COMPONENTS OF A 
MULTIVARIATE NORMAL DISTRIBUTION IS ALSO A MULTIVARIATE NORMAL 
DISTRIBUTION, WITH THE SAME COMPONENT MEANS AND COVARIANCES 
AS THE FULL DISTRIBUTION. 
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2. IF X~ N(µ,Σ), THEN Y = CX, WHERE C IS A NONSINGULAR MATRIX, HAS 
DISTRIBUTION N(Cµ,CΣC’), I.E., Y ~ N(Cµ,CΣC’). 

3. SUPPOSE THAT X~ N(µ,Σ). LET Σ1/2 DENOTE THE SQUARE ROOT MATRIX OF 
Σ, AND Σ-1/2 THE INVERSE OF THE SQUARE ROOT MATRIX.  THEN THE 
DISTRIBUTION OF Y = Σ-1/2(X - µ) IS N(0,I). 

4. A NECESSARY AND SUFFICIENT CONDITION THAT TWO SUBSETS OF THE 
RANDOM VARIABLES OF A JOINT MULTIVARIATE VECTOR BE INDEPENDENT 
IS THAT EACH COVARIANCE OF A VARIABLE FROM ONE SET AND A 
VARIABLE FROM THE OTHER SET BE ZERO. 

 

REGRESSION AND CORRELATION 

 
LET X~ N(µ,Σ) AND PARTITION X, HAVING p COMPONENTS, INTO TWO VECTORS 
HAVING q AND p – q COMPONENTS, RESPECTIVELY: 
 

𝑋 = [𝑋
(1)

𝑋(2)
]. 

LET 
 

𝝁 = [
𝝁(1)

𝝁(2)
] 

 
DENOTE THE CORRESPONDING PARTITION OF THE MEAN VECTOR, AND  
 

[
Σ11 Σ12

Σ12 Σ22
] 

 
THE CORRESPONDING PARTITION OF THE COVARIANCE MATRIX. 
 
THEN THE CONDITIONAL DISTRIBUTION OF X(1) GIVEN X(2) IS A MULTIVARIATE 
NORMAL DISTRIBUTION f(x(1),x(2)) WITH MEAN 
 

𝝁(1) + Σ11Σ22
−1(𝒙(2) − 𝝁(2)) 

 
AND COVARIANCE 
 

Σ11.2 = Σ11 − Σ12Σ22
−1Σ21. 
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NOTE THAT THE COVARIANCE DOES NOT DEPEND ON MEANS. 
 
THE QUANTITY 
 

𝝁(1) + Σ11Σ22
−1(𝒙(2) − 𝝁(2)) 

 
(I.E., THE CONDITIONAL MEAN OF X(1) GIVEN x(2)) IS CALLED THE REGRESSION 
FUNCTION. 
 
THE q x p-q MATRIX Β = Σ12Σ22

−1 IS THE MATRIX OF REGRESSION COEFFICIENTS OF 
X(1) ON x(2).  (THIS NOTATION IS MISLEADING.  THE LETTER B IS INTENDED TO BE 
AN UPPER-CASE GREEK-LETTER BETA.  THAT IS, 
 

𝐵 = [

𝜷1
′

⋮
𝜷𝑞

′
] 

 
WHERE 
 

𝜷𝑖
′ = (𝛽𝑖1, … , 𝛽𝑝−𝑞),   𝑖 = 1,… , 𝑞. ) 

 
LET σij.q+1,…,p DENOTE THE i,j-th ELEMENT OF Σ11.2.  THESE ELEMENTS ARE CALLED 
PARTIAL COVARIANCES.  THE QUANTITY 
 

𝜌𝑖𝑗.𝑞+1,…,𝑝 =
𝜎𝑖𝑗.𝑞+1,…,𝑝

√𝜎𝑖𝑖.𝑞+1,…,𝑝√𝜎𝑗𝑗.𝑞+1,…,𝑝

 

 
IS CALLED THE PARTIAL CORRELATION BETWEEN Xi AND Xj HOLDING Xq+1,…,Xp 
FIXED. 
 
FOR THE CASE IN WHICH THE MULTIVARIATE DISTRIBUTION CONSISTS OF JUST 
TWO COMPONENTS, THE PRECEDING FORMULAS REDUCE TO THE FAMILIAR 
FORMULAS FOR THE REGRESSION OF ONE VARIABLE ON ANOTHER. 
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MULTIPLE CORRELATION COEFFICIENT 

 
CONTINUING WITH THE PRECEDING DISCUSSION, SUPPOSE THAT A 
MULTIVARIATE VECTOR X IS PARTITIONED AS ABOVE, INTO TWO SUBVECTORS X(1) 
AND X(2), AS BEFORE. 
 
LET Xi DENOTE A COMPONENT (SINGLE RANDOM VARIABLE) OF X(1).  THEN IT CAN 
BE PROVED THAT THE LINEAR COMBINATION αX(2) THAT MINIMIZES THE 
VARIANCE OF Xi - αX(2)AND THAT MAXIMIZES THE CORRELATION BETWEEN Xi AND 
αX(2) IS β’iX(2). 
 
THE MAXIMUM CORRELATION BETWEEN Xi AND THE LINEAR COMBINATION αX(2) 
IS CALLED THE MULTIPLE CORRELATION COEFFICIENT BETWEEN Xi AND X(2). 
 
DEFINE σ(i) AS THE i-th ROW OF Σ12.  THEN IT FOLLOWS THAT THE VALUE OF THE 
MULTIPLE CORRELATION COEFFICIENT IS 
 

�̅�𝑖.𝑞+1,…,𝑝 =
√𝝈(𝑖)Σ22

−1𝝈(𝑖)
′

√𝜎𝑖𝑖

, 

 
AND THE VALUE OF THE PARTIAL CORRELATION IS GIVEN BY 
 

𝜎𝑖𝑖.𝑞+1,…,𝑝 = (1 − �̅�𝑖.𝑞+1,…,𝑝
2 )𝜎𝑖𝑖 . 

 

THE GENERAL LINEAR STATISTICAL MODEL 

 
AS MENTIONED ABOVE, THE CONDITIONAL DISTRIBUTION OF X(1) GIVEN X(2) IS A 
MULTIVARIATE NORMAL DISTRIBUTION f(x(1),x(2)) WITH MEAN 
 

𝝁1.2(𝑥
(2)) = 𝝁(1) + Σ11Σ22

−1(𝒙(2) − 𝝁(2)) 
 
AND COVARIANCE 
 

Σ11.2 = Σ11 − Σ12Σ22
−1Σ21, 

 



35 
 

AND THE CONDITIONAL MEAN OF X(1) GIVEN x(2) IS CALLED THE REGRESSION 
FUNCTION.  THAT IS, THE REGRESSION FUNCTION IS 
 

𝐸(𝑿(1)|𝒙2) = 𝝁(1) + Σ11Σ22
−1(𝒙(2) − 𝝁(2)). 

 
THE RIGHT-HAND SIDE OF THIS EXPRESSION IS SIMPLY A LINEAR COMBINATION 
OF x(2).  LET US DENOTE THIS LINEAR COMBINATION AS β0 + Bx(2), WHERE β0 IS 
THE VECTOR OF PARAMETERS 
 

𝜷0 = 𝝁(1) + Σ11Σ22
−1𝝁(2) 

 
AND B IS A MATRIX OF PARAMETERS 
 

Β = Σ11Σ22
−1. 

 
IN THIS NOTATION, THE REGRESSION FUNCTION BECOMES 
 

𝐸(𝑿(1)|𝒙2) = 𝜷𝟎 + 𝚩𝒙(2). 

 
ANY RANDOM VARIABLE, Y, THAT IS CONDITIONAL ON A VARIABLE X MAY BE 
WRITTEN IN THE FORM 
 
Y = E(Y|X) + U 
 
WHERE E(U|X) = 0.  (Y AND X MAY BE SCALARS OR VECTORS OR MATRICES.)  THIS 
FACT IS A DEFINITION OF Y, NOT A PROVED RESULT.  IT CAN BE PROVED THAT THE 
CONDITION E(U|X) = 0 IMPLIES E(U)=0.  THIS FACT FOLLOWS FROM THE LAW OF 
ITERATED EXPECTATIONS: 
 
FOR ANY RANDOM VARIABLES, X, Y AND W, SUPPOSE THAT X IS A FUNCTION OF 
W, SAY X = f(W).  THEN 
 

𝐸(𝑌|𝑋) = 𝐸[𝐸(𝑌|𝑊)|𝑋]. 
 
(NOTE THAT THIS RESULT IS NOT THE SAME AS THE SIMPLER RESULT 
CONCERNING EXPECTATIONS, THAT E(Y) = E[E(Y|W)], OR, IN PARTICULAR, E(Y|X) 
= E[E(Y|X)|W].) 
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IT CAN ALSO BE PROVED THAT THE CONDITION E(U|X) = 0 IMPLIES THAT U IS 
UNCORRELATED WITH ANY FUNCTION OF X. 
 
THESE RESULTS IMPLY THAT THE FACT THAT A RANDOM VARIABLE X(1)|x(2) HAS 
MULTIVARIATE NORMAL DISTRIBUTION N(µ1.2(x),Σ1.2) IMPLIES THAT 
 

𝑿(1)|𝒙(2) = 𝝁1.2 + 𝑼, 
 
WHERE U ~ N(0,Σ1.2).  USING THE “BETA” NOTATION JUST INTRODUCED, THIS 
BECOMES 
 

𝑿(1)|𝒙(2) = 𝜷𝟎 + 𝚩𝒙(2) + 𝑼. 
 
THIS FORM IS A VERSION OF THE GENERAL LINEAR STATISTICAL MODEL, IN 
WHICH IT IS ASSUMED THAT THE MODEL ERROR TERM (U) HAS A MULTIVARIATE 
NORMAL DISTRIBUTION (WITH MEAN 0 AND VARIANCE Σ1.2).  IN GENERAL, THE 
DISTRIBUTIONAL ASSUMPTIONS ABOUT THE MODEL ERROR TERM MAY BE 
RELAXED (E.G., BY DROPPING THE ASSUMPTION THAT IT IS MULTIVARIATE 
NORMAL, OR THAT THE VARIANCE FUNCTION IS THE SAME FOR ALL 
OBSERVATIONS).  THE ESSENTIAL REQUIREMENT IS THAT U BE UNCORRELATED 
WITH x(2).  (THE DESCRIPTOR “LINEAR” IN THE GENERAL LINEAR STATISTICAL 
MODEL REFERS TO THE FACT THAT THE EXPECTED VALUE IS A LINEAR 
COMBINATION OF THE PARAMETER B, NOT OF x(2).)  
 

PRINCIPAL COMPONENTS 

 
A MAJOR DIFFICULTY ASSOCIATED WITH MULTIVARIATE ANALYSIS IS THE VERY 
LARGE NUMBER OF PARAMETERS INVOLVED.  SUPPOSE THAT WE ARE DEALING 
WITH A MULTIVARIATE VECTOR OF p COMPONENTS.  THEN THE NUMBER OF 
PARAMETERS REQUIRED TO SPECIFY A p-DIMENSIONAL MULTIVARIATE NORMAL 
DISTRIBUTION IS p MEANS, p VARIANCES AND (p2 – p)/2 COVARIANCES, FOR A 
TOTAL OF (p2 -p)/2 + 2p PARAMETERS. 
 
MULTIVARIATE PROBLEMS MAY INVOLVE MANY COMPONENTS.  FOR EXAMPLE, A 
PSYCHOLGICAL QUESTIONNAIRE MAY INVOLVE 100 QUESTIONS.  A GENERAL 
REPRESENTATION OF A 100-COMPONENT MULTIVARIATE NORMAL DISTRIBUTION 
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INVOLVES (1002 – 100)/2 + 2(100) = 5,150 PARAMETERS.  THIS NUMBER OF 
PARAMETERS IS VASTLY TOO LARGE FOR A REASONABLE MODEL.  IN ORDER TO 
DEVELOP A REASONABLE MODEL (USEFUL MODEL OF REALITY), IT IS DESIRABLE 
TO REDUCE THE NUMBER OF PARAMETERS. 
 
THE NUMBER OF PARAMETERS CAN BE REDUCED IN A NUMBER OF WAYS.  THE 
DISTRIBUTION MAY BE SIMPLIFIED EITHER BY REDUCING THE NUMBER OF 
COMPONENTS OF THE MULTIVARIATE VECTOR, OR BY REDUCING THE NUMBER 
OF NONZERO COVARIANCES.  PRIOR KNOWLEDGE OR THEORY MAY SUGGEST 
THAT SOME VARIABLES ARE UNCORRELATED, IN WHICH CASE THE COVARIANCES 
ASSOCIATED WITH THEM ARE EQUAL TO ZERO.  BY EXAMINING THE 
CORRELATIONS AMONG VARIABLES, IT MAY BE POSSIBLE TO DISCARD SOME 
VARIABLES, OR TO COMBINE SIMILAR VARIABLES INTO COMPOSITE SCORES.  
ANOTHER METHOD IS TO TRANSFORM THE DATA IN SUCH A WAY THAT THE 
NUMBER OF COVARIANCES IS REDUCED. 
 
THIS SECTION DESCRIBES A STANDARD METHODOLOGY FOR SIMPLIFYING A 
MULTIVARIATE DISTRIBUTION, VIZ., THE METHOD OF PRINCIPAL COMPONENTS.  
THE METHOD OF PRINCIPAL COMPONENTS TRANSFORMS THE ORIGINAL 
MULTIVARIATE VECTOR SUCH THAT THE COVARIANCES BETWEEN DIFFERENT 
COMPONENTS OF THE TRANSFORMED VECTOR ARE ZERO. 
 
A MULTIVARIATE PROBABILITY DISTRIBUTION MAY BE VISUALIZED AS A 
MULTIDIMENSIONAL ELLIPSOID, WHERE THE ELLIPSOID IS DEFINED BY SURFACES 
HAVING EQUAL PROBABILITY DENSITY.  IF THE COMPONENT VARIABLES ARE 
UNCORRELATED, THEN THE PRINCIPAL AXES OF THE ELLIPSOID ARE PARALLEL TO 
THE COMPONENT AXES.  IF THE COMPONENT VARIABLES ARE CORRELATED, THEN 
THE PRINCIPAL AXES OF THE ELLIPSOID ARE OBLIQUE TO THE COMPONENT AXES. 
 
A DISTRIBUTION OF THE LATTER TYPE (PRINCIPAL AXES OBLIQUE TO THE 
COMPONENT AXES) MAY BE TRANSFORMED TO THE FORMER TYPE (PRINCIPAL 
AXES PARALLEL TO THE COMPONENT AXES) BY A ROTATION TRANSFORMATION.  
A ROTATION TRANSFORMATION IS ACCOMPLISHED SIMPLY BY MULTIPLYING THE 
ORIGINAL (UNTRANSFORMED) MULTIVARIATE VECTOR BY A SUITABLE MATRIX.  
SUCH A PROCEDURE WAS DISCUSSED EARLIER IN THE SECTION DEALING WITH 
CONVERTING A MATRIX TO JORDAN CANONICAL FORM, OR WITH APPLYING A 
CHOLESKI TRANFORMATION.  THE TRANSFORMED VARIABLE HAS p MEANS AND p 
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VARIANCES, BUT ALL OF THE COVARIANCES ARE ZERO.  THIS TRANSFORMATION 
RESULTS IN A TREMENDOUS REDUCTION IN THE NUMBER OF PARAMETERS. 
 
ALTHOUGH THE PRINCIPAL COMPONENTS TRANFORMATION REDUCES THE 
NUMBER OF PARAMETERS INVOLVED, IT MAY OR MAY NOT BE A REASONABLE 
APPROACH TO SIMPLIFYING A MULTIVARIATE PROBLEM.  IT IS BEST SUITED TO 
SITUATIONS WHERE THE COMPONENT VARIABLES ARE SIMILAR IN SUBSTANTIVE 
NATURE, SUCH AS A SET OF PSYCHOLOGICAL TEST SCORES.  OTHERWISE, THE 
COMPONENTS OF THE TRANSFORMED VECTOR MAY BE DIFFICULT TO INTERPRET. 
 
THE METHOD OF PRINCIPAL COMPONENTS FOCUSES ON DESCRIBING A SYSTEM 
SUCCINCTLY IN TERMS OF VARIANCES OF TRANSFORMED VARIABLES.  IT 
ACCOMPLISHES THIS OBJECTIVE AT THE COST OF ELIMINATING THE INTER-
CORRELATIONAL RELATIONSHIPS AMONG THE VARIABLES.  THE NEXT SECTION 
WILL DISCUSS A PROCEDURE (FACTOR ANALYSIS) FOR SIMPLIFYING A 
MULTIVARIATE PROBLEM IN A WAY THAT FOCUSES ON THE INTER-
RELATIONSHIPS AMONG THE ORIGINAL COMPONENT VARIABLES. 
 
IT CAN BE PROVED THAT THE PRINCIPAL COMPONENTS ARE THE CHARACTERISTIC 
VECTORS OF THE COVARIANCE MATRIX.  (SEE ANDERSON OP. CIT. FOR THE 
PROOF, WHICH INVOLVES LAGRANGIAN OPTIMIZATION OF MATRIX 
EXPRESSIONS.) 
 

CANONICAL CORRELATIONS AND CANONICAL VARIABLES 

 
IN A PRECEDING SECTION WE PRESENTED THE RESULT THAT THE MULTIPLE 
CORRELATION COEFFICIENT WAS THE MAXIMUM CORRELATION BETWEEN A 
VARIABLE Xi AND A LINEAR COMBINATION OF A SET OF COMPONENTS, X(2).  THIS 
CONCEPT MAY BE EXTENDED.  SUPPOSE THAT THE p-COMPONENT VECTOR X IS 
PARTITIONED INTO TWO PARTS, X(1) AND X(2), CONSISTING OF p1 AND p2 
COMPONENTS, RESPECTIVELY, WHERE p1 + p2 = n.  (IN THE NOTATION OF THE 
PREVIOUS SECTION, p1 WAS DENOTED AS q AND p2 AS p – q.) 
 
IN THE TOPIC OF CANONICAL CORRELATIONS AND CANONICAL VARIABLES, THE 
PROBLEM IS TO DETERMINE LINEAR COMBINATIONS OF EACH PARTITION SUCH 
THAT: 
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1. THE FIRST LINEAR COMBINATION IN EACH PARTITION HAS MAXIMUM 
CORRELATION (OF THE SET OF ALL POSSIBLE LINEAR COMBINATIONS); 

2. THE SECOND LINEAR COMBINATION IN EACH PARTITION HAS MAXIMUM 
CORRELATION, OF ALL LINEAR COMBINATIONS THAT ARE UNCORRELATED 
WITH THE FIRST LINEAR COMBINATIONS; 

3. THE i-th SET OF LINEAR COMBINATIONS (ONE FROM EACH PARTITION) HAS 
MAXIMUM CORRELATION, OF ALL LINEAR COMBINATIONS THAT ARE 
UNCORRELATED WITH ALL PREVIOUS SETS OF LINEAR COMBINATIONS. 

 
SAID ANOTHER WAY, THE r-th PAIR OF CANONICAL VARIATES ARE THE PAIR OF 
LINEAR COMBINATIONS α(r)’X(1) and γ(r)’X(2), EACH OF UNIT VARIANCE AND 
UNCORRELATED WITH THE FIRST r – 1 PAIRS OF CANONICAL VARIATES AND 
HAVING MAXIMUM CORRELATION.  THE CORRELATION IS THE CANONICAL 
CORRELATION. 
 
IT CAN BE SHOWN THAT THE r-th CANONICAL CORRELATION IS THE r-th LARGEST 
ROOT OF THE MATRIX 
 

[
−𝜆Σ11 Σ12

Σ21 −𝜆Σ22
]. 

 
IN THE SPECIAL CASE OF p1 = 1, THE SINGLE CANONICAL CORRELATION IS THE 
MULTIPLE CORRELATION BETWEEN X(1) = X1 AND X(2). 
 
SEE ANDERSON OP. CIT. FOR DERIVATION OF THESE RESULTS. 
 

CLASSIFICATION ANALYSIS 

 
CLASSIFICATION ANALYSIS IS THE PROBLEM OF DECIDING TO WHAT POPULATION 
(CLASS, GROUP, CATEGORY) AN INDIVIDUAL BELONGS, BASED ON 
MEASUREMENTS TAKEN ON THE INDIVIDUAL.  IN THIS PRESENTATION, THIS 
PROBLEM WILL BE ADDRESSED FOR THE CASE IN WHICH THE MEASUREMENTS 
HAVE A MULTIVARIATE NORMAL DISTRIBUTION. 
 
THE PROBLEM WILL BE ADDRESSED BY FIRST CONSIDERING THE CASE IN WHICH 
THERE EXIST JUST TWO POPULATIONS OF INTEREST.  WE SHALL USE THE INDEX 
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VALUE “1” TO REFER TO THE FIRST POPULATION AND THE VALUE “2” TO REFER 
TO THE SECOND POPULATION. 
 
THIS PROBLEM IS A TWO-ALTERNATIVE STATISTICAL DECISION PROBLEM.  GIVEN 
A SAMPLE OBSERVATION, THE STATISTICIAN (DECISIONMAKER) MUST DECIDE 
WHETHER THE INDIVIDUAL BELONGS TO POPULATION 1 OR POPULATION 2. 
 
THE PROBLEM MAY BE REPRESENTED BY A 2 x 2 MATRIX, WHERE THE TWO 
POPULATIONS ARE REPRESENTED BY THE TWO ROWS, AND THE TWO POSSIBLE 
DECISIONS ARE REPRESENTED BY THE TWO COLUMNS.  THE ENTRIES IN THE 
TABLE INDICATE WHETHER A CORRECT DECISION IS MADE. 
 

 Decision 

1 2 
Population 1 Correct decision Error 

2 Error Correct decision 
 
THIS PROBLEM MAY BE CONSIDERED TO BE A TEST OF THE STATISTICAL 
HYPOTHESIS THAT THE TRUE POPULATION IS POPULATION 1.  IN THAT CASE, THE 
ERROR OF DECIDING POPULATION 2 WHEN THE INDIVIDUAL IS FROM 
POPULATION 1 IS CALLED A TYPE 1 ERROR, AND THE ERROR OF DECIDING 
POPULATION 1 WHEN THE INDIVIDUAL IS FROM POPULATION 2 IS CALLED A TYPE 
2 ERROR.  THIS FRAMEWORK IS OFTEN ADOPTED IN THE APPLICATION OF 
MEDICAL DIAGNOSIS, WHERE POPULATION 1 IS THE POPULATION OF 
INDIVIDUALS HAVING AN ILLNESS OR CONDITION OF INTEREST, AND POPULATION 
2 IS THE POPULATION OF INDIVIDUALS NOT HAVE THE ILLNESS OR CONDITION. 
 
THE DECISION ABOUT WHICH POPULATION AN OBSERVED INDIVIDUAL BELONGS 
TO IS MADE ACCORDING TO A DECISION CRITERION, TAKING INTO ACCOUNT THE 
OBSERVED MEASUREMENTS.  A SPECIFIED DECISION CRITERION WILL BE 
ASSOCIATED WITH VALUES FOR THE PROBABILITIES OF MAKING THE TWO TYPES 
OF ERROR.  TYPICALLY, IF A DECISION CRITERION HAS A HIGHER PROBABILITY OF 
ONE TYPE OF ERROR, IT WILL HAVE A LOWER PROBABILITY OF THE OTHER TYPE 
OF ERROR. 
 
IF THIS (HYPOTHESI-TESTING) FRAMEWORK IS ADOPTED, A STANDARD 
METHODOLOGY FOR SUMMARIZING THE PERFORMANCE OF ALTERNATIVE 
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DECISION CRITERIA IS TO CONSTRUCT A GRAPH SHOWING 1 –  Pr(Type 2 error) 
VERSUS Pr(Type 1 error) FOR MEMBERS OF THE SET OF ALTERNATIVE DECISION 
CRITERIA.  SUCH A GRAPH IS CALLED A RECEIVER OPERATING CHARACTERISTIC 
GRAPH (OR CURVE), OR ROC GRAPH (OR CURVE).  A PREFERRED DECISION 
CRITERIA IS SELECTED CORRESPONDING TO A POINT ON THE ROC CURVE. 
 
(A DETAILED DISCUSSION OF THE USE OF ROC CURVES IS PRESENTED IN SIGNAL 
DETECTION THEORY AND PSYCHOPHYSICS BY DAVID M. GREEN AND JOHN A. 
SWETS (WILEY, 1966) OR IN EVALUATION OF DIAGNOSTIC SYSTEMS: METHODS 
FROM SIGNAL DETECTION THEORY BY JOHN A. SWETS AND RONALD M. PICKETT 
(ACADEMIC PRESS, 1982).) 
 
FOR THIS PRESENATION WILL ADOPT A DIFFERENT FRAMEWORK, IN WHICH A 
COST IS ASSIGNED TO EACH OF THE TWO TYPES OF ERROR, AND THE OBJECTIVE IS 
TO IDENTIFY A DECISION CRITERION THAT MINIMIZES THE EXPECTED COST.  (THIS 
IS THE APPROACH DESCIRBED IN ANDERSON OP. CIT.  THIS APPROACH IS MORE 
COMMON IN STATISTICAL DECISION THEORY THAN THE ROC APPROACH.  IT ALSO 
GENERALIZES MORE EASILY TO THE CASE IN WHICH THERE ARE MORE THAN TWO 
POPULATIONS OF INTEREST.  THE ROC APPROACH IS APPROPRIATE IF THERE ARE 
JUST TWO POPULATIONS (E.G., PRESENCE OR ABSENCE OF A CONDITION) AND 
THE COSTS OF MAKING THE TWO TYPES OF ERRORS ARE NOT COMMENSURABLE 
(E.G., THE COST OF A FALSE POSITIVE MAY BE A MINOR EXPENSE OR 
INCONVENIENCE, WHEREAS THE COST OF A FALSE NEGATIVE MAY BE DEATH). 
 
THE METHODOLOGY PRESENTED HERE USES THE SAME NOTATION AS 
ANDERSON. 
 
THE SOLUTION TO THE CLASSIFICATION PROBLEM INVOLVES TWO PROBABILITY 
DISTRIBUTIONS: THE A PRIORI PROBABILITY THAT AN OBSERVATION IS DRAWN 
FROM A PARTICULAR POPULATION, AND THE CONDITIONAL PROBABILITIY 
DISTRIBUTION OF THE OBSERVED MEASUREMENTS, GIVEN THE POPULATION. 
 
A PRIORI PROBABILITIES OF POPULATION MEMBERSHIP: LET q1 DENOTE THE 
PROBABILITY OF DRAWING AN OBSERVATION FROM POPULATION 1 AND q2 
DENOTE THE PROBABILITY OF DRAWING AN OBSERVATION FROM POPULATION 2. 
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CONDITIONAL SAMPLING DISTRIBUTION: LET pi(x) DENOTE THE PROBABILITY 
DENSITY OF OBSERVATION x, GIVEN THAT IT IS DRAWN FROM POPULATION i. 
 
COSTS OF MISSCLASSIFICATION: LET C(2|1) DENOTE THE COST ASSOCIATED WITH 
THE ERROR OF DECIDING POPULATION 2 WHEN THE OBSERVATION IS FROM 
POPULATION 1, AND C(1|2) DENOTE THE COST ASSOCIATED WITH THE ERROR OF 
DECIDING POPULATION 1 WHEN THE OBSERVATION IS FROM POPULATION 2. 
 
LET Ri DENOTE THE REGION OF CLASSIFICATION FOR POPULATION i, THAT IS, THE 
DECISION IS MADE THAT THE OBSERVATION IS FROM POPULATION i IF THE 
OBSERVATION x IS IN REGION Ri. 
 
THEN IT CAN BE PROVED THAT THE REGIONS Ri THAT CORRESPOND TO MINIMUM 
EXPECTED COST ARE DEFINED BY 
 

𝑅1 : 
𝑝1(𝒙)

𝑝2(𝒙)
≥

𝐶(1|2)𝑞2

𝐶(2|1)𝑞1
 

 

𝑅2 : 
𝑝1(𝒙)

𝑝2(𝒙)
<

𝐶(1|2)𝑞2

𝐶(2|1)𝑞1
. 

 
THIS CRITERION MAY BE RECOGNIZED AS THE USUAL LIKELIHOOD-RATIO TEST OF 
THE HYPOTHESIS THAT THE DISTRIBUTION OF THE OBSERVED VALUE x IS p1(x) 
VERSUS THE ALTERNATIVE THAT IT IS p2(x). 
 
THE PRECEDING RESULT APPLIES TO ANY PROBABILITY DISTRIBUTIONS.  IN THE 
CASE IN WHICH THE TWO DISTRIBUTIONS ARE MULTIVARIATE NORMAL WITH 
DIFFERENT MEAN VECTORS BUT THE SAME COVARIANCE MATRIX, THE DENSITY 
FUNCTION IS 
 

𝑝𝑖(𝒙) =
1

(2𝜋)
1
2
𝑝|Σ|

1
2

𝑒𝑥𝑝 [−
1

2
(𝒙 − 𝝁(𝑖))

′
Σ−1(𝒙 − 𝝁(𝑖))], 

 
AND THE RATIO OF THE DENSITIES BECOMES 
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𝑝1(𝒙)

𝑝2(𝒙)
=

𝑒𝑥𝑝 [−1

2
(𝒙 − 𝝁(1))

′
Σ−1(𝒙 − 𝝁(1))]

𝑒𝑥𝑝[−1

2
(𝒙 − 𝝁(2))′Σ−1(𝒙 − 𝝁(2))]

= exp {−
1

2
[(𝒙 − 𝝁(1))

′
Σ−1(𝒙 − 𝝁(1)) − (𝒙 − 𝝁(2))

′
Σ−1(𝒙 − 𝝁(2))]}. 

 
TAKING LOGARITHMS OF THE DECISION CRITERION, IT BECOMES: 
 

𝑅1 : −
1

2
[(𝒙 − 𝝁(1))

′
Σ−1(𝒙 − 𝝁(1)) − (𝒙 − 𝝁(2))

′
Σ−1(𝒙 − 𝝁(2))] ≥ log 𝑘 

𝑅2 : −
1

2
[(𝒙 − 𝝁(1))

′
Σ−1(𝒙 − 𝝁(1)) − (𝒙 − 𝝁(2))

′
Σ−1(𝒙 − 𝝁(2))] < log 𝑘 

 
WHERE 
 

𝑘 =
𝑞2𝐶(1|2)

𝑞1𝐶(2|1)
. 

 
THE TERMS IN THE LEFT-HAND-SIDE OF THE INEQUALITY DEFINING THE REGIONS 
MAY BE REARRANGED TO PRODUCE: 
 

𝑅1: 𝒙
′Σ−1(𝝁(1) − 𝝁(2)) −

1

2
(𝝁(1) + 𝝁(2))

′
Σ−1(𝝁(1) − 𝝁(2)) ≥ log 𝑘 

𝑅2:  𝒙
′Σ−1(𝝁(1) − 𝝁(2)) −

1

2
(𝝁(1) + 𝝁(2))

′
Σ−1(𝝁(1) − 𝝁(2)) < log 𝑘. 

 
THE FIRST TERM OF THE LEFT-HAND SIDE OF THE INEQUALITY, 
 

𝒙′Σ−1(𝝁(1) − 𝝁(2)), 

 
IS CALLED THE DISCRIMINANT FUNCTION.   IT IS A LINEAR FUNCTION OF THE 
COMPONENTS OF THE OBSERVATION VECTOR.  THE SECOND TERM, 
 

−
1

2
(𝝁(1) + 𝝁(2))

′
Σ−1(𝝁(1) − 𝝁(2)), 

 
IS SIMPLY A CONSTANT (DEPENDENT ON THE DISTRIBUTION PARAMETERS). 
 
THE PRECEDING DISCUSSION HAS DESCRIBED THE TOPIC OF CLASSIFICATION 
ANALYSIS IN THE CASE OF TWO POPULATIONS.  EXTENSION TO THE CASE OF 
MORE THAN TWO POPULATIONS IS STRAIGHTFORWARD. 
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THE FOLLOWING RESULT IS QUOTED FROM ANDERSON: 
 
IF qi is the a priori probability of drawing an observation from population πi = 
N(µ(i),Σ) (i=1,…,m) and if the costs of misclassification are equal, then the regions 
of classification R1,…,Rm that minimize the expected cost are defined by 
 

𝑅𝑗: 𝑢𝑗𝑘(𝒙) > 𝑙𝑜𝑔
𝑞𝑘

𝑞𝑗
, 𝑘 = 1,… ,𝑚; 𝑘 ≠ 𝑗, 

 
and 
 

𝑢𝑗𝑘(𝒙) = 𝑙𝑜𝑔
𝑝𝑗(𝒙)

𝑝𝑘(𝒙)
= [𝒙 −

1

2
(𝝁(𝑗) + 𝝁(𝑘))

′
Σ−1(𝝁(𝑗) − 𝝁(𝑘))]. 

 

TIME SERIES 

 
A TIME SERIES IS A SET OF OBSERVATIONS TAKEN AT VARIOUS POINTS IN TIME 
(OR IN SPACE).  IN MANY APPLICATIONS OF INTEREST, NEARBY OBSERVATIONS 
ARE CORRELATED.  IN ORDER TO UNDERSTAND THE STOCHASTIC NATURE OF A 
SYSTEM, AND TO CONDUCT TESTS OF HYPOTHESES, IT IS HELPFUL TO 
TRANSFORM THE OBSERVED VARIABLES FROM ONES THAT ARE CORRELATED TO 
ONES THAT ARE UNCORRELATED (AND CONDUCT THE TESTS ON THE 
TRANSFORMED VARIABLES).  SUCH A TRANSFORMATION CORRESPONDS TO A 
MATHEMATICAL (STATISTICAL) MODEL OF THE STOCHASTIC PROCESS THAT 
GENERATES THE OBSERVED DATA.  THE DESIRE IS TO IDENTIFY A MODEL THAT 
HAS A RELATIVELY SMALL NUMBER OF PARAMETERS. 
 
TIME SERIES MAY BE CLASSIFIED IN A NUMBER OF WAYS.  ONE CLASSIFICATION IS 
WHETHER THE OBSERVATIONS ARE UNIVARIATE OR MULTIVARIATE.  FOR 
UNIVARIATE OBSERVATIONS, THE CORRELATION OF INTEREST IS THE 
CORRELATION BETWEEN NEARBY OBSERVATIONS.  FOR MULTIVARIATE 
OBSERVATIONS, TWO TYPES OF CORRELATIONS MAY OCCUR: CORRELATION 
BETWEEN NEARBY OBSERVATIONS, AND CORRELATIONS AMONG THE 
COMPONENT VARIABLES OF THE MULTIVARIATE OBSERVATION VECTOR. 
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SINCE THE 1960s MUCH WORK HAS BEEN DONE IN THE FIELD OF TIME SERIES 
ANALYSIS.  MOST OF THE METHODOLOGY IN USE TODAY STEMS FROM THE WORK 
OF G. E. P. BOX AND GWILYM JENKINS, WHO SHOWED IN DETAIL HOW A 
PARTICULAR CLASS OF TIME-SERIES MODELS – THE AUTOREGRESSIVE 
INTEGRATED MOVING AVERAGE (ARIMA) MODELS – MAY BE USED TO DESCRIBE 
THE STOCHASTIC BEHAVIOR OF A WIDE RANGE OF TIME-VARYING PHENOMENA.  
THESE MODELS ARE GENERALLY KNOWN AS BOX-JENKINS MODELS. 
 
BOX-JENKINS MODELS MAY BE UNIVARIATE OR MULTIVARIATE.  THE CLASSIC 
TEXT ON BOX-JENKINS MODELS IS 
 
Box, George E. P., Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, Time 
Series Analysis, Forecasting and Control, 5th ed., Wiley, 2016 
 
THERE ARE A LARGE NUMBER OF TEXTS ON UNIVARIATE BOX-JENKINS MODELS.  
A RECENT ONE IS 
 
Cryer, Jonathan D. and Kung-Sik Chan, Time Series Analysis with Applications in R, 
Springer, 2008. 
 
MAJOR TEXTS ON MULTIVARIATE TIME SERIES ANALYSIS ARE: 
 
Tsay, Ruey S., Multivariate Time Series Analysis with R and Financial Applications, 
Wiley, 2014. 
 
Lütkepohl, Helmut, New Introduction to Multiple Time Series Analysis, Springer, 
2006. 
 
Hamilton, James D., Time Series Analysis, Princeton University Press, 1994. 
 
IN THE UNIVARIATE CASE, A BOX-JENKINS MODEL MAY BE REPRESENTED AS 
 

𝑧𝑡 = 𝜙0 + 𝜙1𝑧𝑡−1 + ⋯+ 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 , 

 
WHERE zt DENOTES AN OBSERVED VALUE AT TIME t, at IS A MODEL ERROR TERM 
AT TIME t, AND THE φs AND θs ARE MODEL PARAMETERS.  IT IS ASSUMED THAT 
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THE at’s HAVE ZERO MEAN AND CONSTANT VARIANCE σ2, AND ARE 
UNCORRELATED.  (THE ASSUMPTION OF CONSTANT VARIANCE MAY BE RELAXED.) 
 
IN THE PRECEDING EQUATION, THE “φ” TERMS (OF INDEX 1 OR GREATER) ARE 
REFERRED TO AS THE AUTOREGRESSIVE PART OF THE MODEL, AND THE “θ” 
TERMS ARE REFERRED TO AS THE MOVING AVERAGE PART OF THE MODEL. 
 
IN THE MULTIVARIATE CASE, THE SCALARS zt AND at ARE REPLACED BY A 
MULTIVARIATE VECTORS AND THE φs AND θs ARE REPLACED BY MATRICES. 
 
THIS PRESENTATION PRESENTS ONLY SUMMARY INFORMATION ABOUT TIME 
SERIES.  THE TOPIC OF TIME SERIES ANALYSIS IS ADDRESSED IN DETAIL IN 
ANOTHER PRESENTATION.  THE GOAL IN TIME SERIES ANALYSIS IS TO DETERMINE 
THE VALUES OF THE MODEL PARAMETERS, AND TO USE THE ESTIMATED MODEL 
TO FORECAST AND/OR CONTROL A PROCESS. 
 
THIS SECTION HAS PRESENTED BASIC INFORMATION ABOUT THE NATURE OF A 
MULTIVARIATE NORMAL DISTRIBUTION, ASSUMING THAT ALL OF THE 
DISTRIBUTION PARAMETERS (µs and Σs) ARE KNOWN.  THE NEXT SECTION 
ADDRESSES THE ISSUE OF ESTIMATION OF DISTRIBUTION PARAMETERS AND 
MAKING TESTS OF HYPOTHESIS (OR DECISIONS) ABOUT THEM.) 
 
AS FOR THIS SECTION, THE PRIMARY REFERENCE TEXT IS ANDERSON OP. CIT. 
 
WITH THE UBIQUITY OF GENERAL-PURPOSE STATISTICAL SOFTWARE PACKAGES, 
MUCH MULTIVARIATE STATISTICAL ANALYSIS IS NOW PERFORMED WITH 
SUPERFICIAL KNOWLEDGE OF DETAILED DISTRIBUTION THEORY AND ESTIMATION 
PROCEDURES.  ALSO, FOR APPLICATIONS IN WHICH THE DISTRIBUTION THEORY 
BECOMES COMPLICATED, AS IT DOES IN MULTIVARIATE ANALYSIS, MUCH 
ANALYSIS IS DONE USING RESAMPLING PROCEDURES (“BOOTSTRAP” METHODS); 
IN SUCH CASES IT IS NOT NECESSARY TO KNOW THE EXACT FORMULA FOR A 
SAMPLING DISTRIBUTION.  FOR THESE REASONS, THE DISCUSSION THAT 
FOLLOWS IS SURVEY IN NATURE, WITH MENTION OF MAJOR RESULTS AND 
SPECIAL CASES BUT LIMITED DISCUSSION OF DETAILS.  A PRIMARY 
CONSIDERATION IN THE LEVEL OF DETAIL OF THE PRESENTATION IS TO PROVIDE 
SUFFICIENT BACKGROUND TO HAVE A HIGH-LEVEL UNDERSTANDING OF 
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STANDARD MULTIVARIATE PROCEDURES EMPLOYED BY MAJOR STATISTICAL 
SOFTWARE PACKAGES. 

6. ESTIMATION AND HYPOTHESIS TESTING 

 

ESTIMATION OF THE MEAN VECTOR AND COVARIANCE MATRIX 

 
THE FIRST PROBLEM IN NORMAL-DISTRIBUTION MULTIVARIATE ANALYSIS IS 
ESTIMATION OF THE PARAMETERS THAT DEFINE THE DISTRIBUTION, VIZ., THE 
MEAN VECTOR AND THE COVARIANCE MATRIX. 
 
SINCE THE PARAMETRIC FORM OF THE PROBABILITY DISTRIBUTION IS SPECIFIED 
(I.E., IS MULTIVARIATE NORMAL), THE STANDARD APPROACH TO PARAMETER 
ESTIMATION IS THE METHOD OF MAXIMUM LIKELIHOOD.  THAT IS, THE 
PARAMETER ESTIMATES ARE THOSE PARAMETER VALUES THAT MAXIMIZE THE 
LIKELIHOOD FUNCTION.  THIS PRESENTATION WILL NOT SHOW DETAILS OF THIS 
PROCEDURE (WHICH ARE PRESENTED IN DETAIL IN ANDERSON). 
 
LET x1,…,xN BE A SAMPLE OF N OBSERVATIONS FROM A MULTIVARIATE NORMAL 
DISTRIBUTION, N(µ,Σ), WHERE IT IS ASSUMED THAT THE NUMBER OF 
COMPONENTS OF xi IS p, AND p < N.  THEN THE MAXIMUM LIKELIHOOD 
ESTIMATES OF µ AND Σ ARE 
 

�̂� = �̅� =
1

𝑁
∑ 𝒙𝑖

𝑁

𝑖=1
 

AND 
 

Σ̂ =
1

𝑁
∑ (𝒙𝑖 − �̅�)(𝒙𝑖 − �̅�)′.

𝑁

𝑖=1
 

 
THE MAXIMUM LIKELIHOOD ESTIMATE OF THE MEAN IS UNBIASED, I.E., 
 

𝐸(�̂�) = 𝝁. 
 
THE MAXIMUM LIKELIHOOD ESTIMATE OF THE COVARIANCE MATRIX IS NOT 
UNBIASED.  ITS EXPECTED VALUE IS 
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𝐸(Σ̂) =
𝑁 − 1

𝑁
Σ. 

 
HENCE THE QUANTITY  
 

𝑆 =
1

𝑁 − 1
∑ (𝒙𝑖 − �̅�)(𝒙𝑖 − �̅�)′.

𝑁

𝑖=1
 

 
IS AN UNBIASED ESTIMATE OF Σ.  S IS CALLED THE SAMPLE COVARIANCE MATRIX.  

IT IS OFTEN DENOTED AS Σ̂. 
 
THE SAMPLING DISTRIBUTION OF �̂�. 
 

THE DISTRIBUTION OF �̂� IS N(µ,(1/N)Σ).  HENCE THE DISTRIBUTION OF √𝑁(�̅� − 𝝁) 
IS N(0, Σ).  THE DISTRIBUTION OF  
 

𝑁(�̅� − 𝝁)′Σ−1(�̅� − 𝝁) 
 
IS A χ2 (CHI-SQUARED) DISTRIBUTION WITH p DEGREES OF FREEDOM. 
 
HENCE, IF Σ IS KNOWN, THE SAMPLING DISTRIBUTION OF 𝑁(�̅� − 𝝁)′Σ−1(�̅� − 𝝁) 
IS ALSO KNOWN, AND WE CAN THEN CONSTRUCT CONFIDENCE REGIONS FOR µ 
IN THE USUAL WAY. 
 
IF Σ IS NOT KNOWN, THEN IT CAN BE SHOWN THAT THE DISTRIBUTION OF 
 

𝑇2

𝑁 − 1

𝑁 − 𝑝

𝑝
 

WHERE 
 

𝑇2 = 𝑁(�̅� − 𝝁𝟎)′S
−1(�̅� − 𝝁𝟎) 

 
IS A NONCENTRAL F DISTRIBUTION WITH p AND N – p DEGREES OF FREEDOM 

AND NONCENTRALITY PARAMETER 𝑁(�̅� − 𝝁𝟎)
′Σ−1

(�̅� − 𝝁𝟎).  IF µ = µ0, THEN THE 
F DISTRIBUTION IS CENTRAL.  THESE RESULTS MAY BE USED TO CONSTRUCT 
CONFIDENCE REGIONS FOR µ IN THE USUAL WAY. 
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THE PRECEDING RESULTS ARE ANALOGUES OF THE CORRESPONDING UNIVARIATE 
RESULTS (z AND t STATISTICS, TESTS, AND CONFIDENCE INTERVALS). 
 

THE SAMPLING DISTRIBUTION OF Σ̂. 
 
AS MENTIONED ABOVE, THE SAMPLE COVARIANCE MATRIX IS 
 

Σ̂ = 𝑆 =
1

𝑁 − 1
∑ (𝒙𝑖 − �̅�)(𝒙𝑖 − �̅�)′.

𝑁

𝑖=1
 

 
IN THE UNIVARIATE CASE, THIS QUANTITY HAS A χ2 DISTRIBUTION.  IN THE 
MULTIVARIATE CASE, THIS QUANTITY HAS A GENERALIZATION OF THE χ2 
DISTRIBUTION.  SPECIFICALLY, THE DENSITY OF 
 

𝐴 = (𝑁 − 1)𝑆 = ∑ (𝒙𝑖 − �̅�)(𝒙𝑖 − �̅�)′
𝑁

𝑖=1
 

 
IS 
 

|𝐴|−
1
2
(𝑛−𝑝−1)exp (−1

2
𝑡𝑟Σ−1𝐴)

2
1
2
𝑛𝑝𝜋𝑝(𝑝−1)/4|Σ|

1
2
𝑛∏ Γ[

1
2
(𝑛+1−𝑖)]

𝑝
𝑖=1

 

 
FOR A POSITIVE DEFINITE AND 0 OTHERWISE.  THIS DENSITY FUNCTION IS 
DENOTED BY w(A|Σ,n) AND THE CORRESPONDING DISTRIBUTION FUNCTION IS 
DENOTED BY W(Σ,n).  THIS DISTRIBUTION IS CALLED THE WISHART DISTRIBUTION 
WITH COVARIANCE MATRIX Σ AND n DEGREES OF FREEDOM.  THE DISTRIBUTION 
OF S IS W((1/(N-1))Σ,N-1). 
 
THE WISHART DISTRIBUTION ARISES OFTEN IN MULTIVARIATE ANALYSIS.  IN 
MULTIVARIATE ANALYSIS OF VARIANCE (TO BE DISCUSSED LATER), IT IS THE 
DISTRIBUTION OF THE COMPONENTS OF A PARTITIONED SUM OF SQUARES. 
 
THE DETERMINANT OF Σ, |Σ| IS CALLED THE GENERALIZED VARIANCE, AND THE 
DETERMINANT OF S, |S| IS CALLED THE SAMPLE GENERALIZED VARIANCE.  AS 
DISCUSSED EARLIER, THE DETERMINANT OF A SYMMETRIC MATRIX IS A MEASURE 
OF VOLUME OF THE PARALLELOTROPE (HYPER-PARALLELOGRAM) SPANNED BY 
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THE EIGENVECTORS OF THE MATRIX.  ANDERSON DISCUSSES THE GENERALIZED 
VARIANCE AND ITS DISTRIBUTION. 
 
SAMPLING DISTRIBUTIONS OF SAMPLE CORRELATION COEFFICIENTS, PARTIAL 
CORRELATION COEFFICIENTS AND MULTIPLE CORRELATION COEFFICIENTS 
 
ANDERSON DESCRIBES ESTIMATION AND THE SAMPLING DISTRIBUTIONS OF 
SAMPLE CORRELATION COEFFICIENTS, PARTIAL CORRELATION COEFFICIENTS, 
AND MULTIPLE CORRELATION COEFFICIENTS.  THOSE RESULTS ARE NOT 
DISCUSSED HERE. 
 

TESTS OF HYPOTHESES ABOUT ONE OR TWO MEAN VECTORS 

 
FOR A SINGLE SAMPLE, THE TEST OF WHETHER THE POPULATION MEAN EQUALS 
A SPECIFIC VALUE IS STRAIGHTFORWARD.  IF THE COVARIANCE MATRIX, Σ, IS 
KNOWN, THEN THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN IS N(µ,Σ/n), 
AND THIS DISTRIBUTION MAY BE USED AS THE BASIS FOR THE TEST AND FOR 
CONSTRUCTION OF CONFIDENCE REGIONS.  IF Σ IS UNKNOWN AND ESTIMATED 
BY S, THEN THE DISTRIBUTION OF T2 IS F WITH p AND n-p+1 DEGREES OF 
FREEDOM, AND THIS DISTRIBUTION MAY BE USED AS THE BASIS FOR THE TEST 
AND FOR CONSTRUCTION OF CONFIDENCE REGIONS. 
 
FOR TWO SAMPLES (I.E., TESTING THE HYPOTHESIS OF EQUIVALENCE OF TWO 
POPULATION MEANS), THE SITUATION IS MORE COMPLICATED.  LET µ(1) AND µ(2) 
DENOTE THE TWO POPULATION MEANS, AND Σ1 AND Σ2 DENOTE THE TWO 
POPULATION COVARIANCE MATRICES.  IF Σ1 AND Σ2 ARE KNOWN, THEN THERE IS 
NO PROBLEM: THE DIFFERENCE IN THE SAMPLE MEANS, 
 

�̅�(1) − �̅�(2), 
 
IS MULTIVARIATE NORMAL WITH MEAN 
 

𝝁(1) − 𝝁(2) 
 
AND COVARIANCE MATRIX 
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1

𝑛1
Σ1 +

1

𝑛2
Σ2. 

 
SINCE THE SAMPLING DISTRIBUTION IS KNOWN, IT MAY BE USED TO MAKE TESTS 

ABOUT THE VALUE OF 𝝁(1) − 𝝁(2), AND TO CONSTRUCT CONFIDENCE REGIONS. 
 
IF Σ1 AND Σ2 ARE UNKNOWN BUT EQUAL, SAY Σ1 = Σ2 = Σ, AND THE SAMPLE SIZE IS 
THE SAME FOR THE TWO SAMPLES IS THE SAME, n1 =n2 = n, THEN THE 
DIFFERENCES IN THE SAMPLE OBSERVATIONS, 
 

𝒅𝑖 = 𝒙𝑖
(1)

− 𝒙𝑖
(2)

 

 
HAVE A MULTIVARIATE NORMAL DISTRIBUTION WITH MEAN 
 

𝝁(1) − 𝝁(2) 
 
AND COVARIANCE MATRIX 2Σ.  THIS IS EXACTLY THE SITUATION FOR THE ONE-
SAMPLE CASE (I.E., A SINGLE SAMPLE OF n OBSERVATIONS HAVING THE SAME 
MEAN AND VARIANCE). 
 
FOR THE TWO-SAMPLE CASE IN WHICH THE SAMPLE SIZES ARE DIFFERENT AND 
THE COVARIANCE MATRIX IS UNKNOWN, HOWEVER, THIS APPROACH DOES NOT 
WORK.  SINCE THE ESTIMATED COMMON SAMPLE VARIANCE DOES NOT HAVE A 
WISHART DISTRIBUTION.  IN THIS CASE, THE STANDARD APPROACH IS TO 
ESTIMATE THE COVARIANCE MATRIX USING THE SAME NUMBER OF 
OBSERVATIONS FROM EACH SAMPLE, IN WHICH CASE THE ESTIMATED COMMON 
SAMPLE VARIANCE DOES HAVE A WISHART DISTRIBUTION. 
 

TESTS OF HYPOTHESES ABOUT COVARIANCE MATRICES 

 
TESTS ABOUT COVARIANCE MATRICES (E.G., WHETHER A COVARIANCE MATRIX IS 
EQUAL TO OR PROPORTIONAL TO A PARTICULAR MATRIX, OR WHETHER A SET OF 
COVARIANCE MATRICES ARE EQUAL) ARE COMPLICATED.  THEY ARE BASED ON 
LIKELIHOOD RATIO TESTS, AND TYPICALLY INVOLVE THE CHARACTERISTIC ROOTS 
OF THE COVARIANCE MATRIX (OR MATRICES).  THEY ARE COMPLICATED, AND 
NOT DISCUSSED HERE.  THEY ARE DISCUSSED IN ANDERSON FOR SPECIAL CASES 
(E.G., TESTING WHETHER A SET OF COVARIANCES ARE EQUAL).  (SINCE THE 
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DISTRIBUTION THEORY IS COMPLICATED, SUCH TESTS MAY BE BASED ON 
NONPARAMETRIC METHODS, OR ON RESAMPLING.) 
 

THE MULTIVARIATE GENERAL LINEAR STATISTICAL MODEL 

 
ESTIMATION 
 
IN THE UNIVARIATE CASE, THE GENERAL LINEAR STATISTICAL MODEL HAS THE 
FORM, FOR THE i-th OBSERVATION OF A SAMPLE, 
 

𝑦𝑖 = 𝒙𝑖′𝜷 + 𝑒𝑖 
 
WHERE yi IS THE OBSERVED RESPONSE, xi’ = (xi1,…,xip) ARE EXPLANATORY 
VARIABLES, β = (β1,…,βp)’ IS A VECTOR OF PARAMETERS, AND ei IS A MODEL 
ERROR TERM HAVING MEAN ZERO AND VARIANCE σ2.  FOR THE MOMENT, LET US 
ASSUME THAT THE SAMPLE CONSISTS OF n OBSERVATIONS, AND THAT THE ei ARE 
UNCORRELATED (i = 1,…, n). 
 
IN MATRIX FORM, THE SAMPLE OF OBSERVATIONS IS WRITTEN AS 
 

𝒚 = 𝑋𝜷 + 𝒆 
 
WHERE y = (y1,…,yn)’ IS THE VECTOR OF OBSERVED RESPONSES, X IS A MATRIX 
WHOSE ROWS ARE THE SAMPLE OF EXPLANATORY VARIABLES, xi’, (i = 1,…,n), AND 
e = (e1,…,en)’ IS A VECTOR OF MODEL ERROR TERMS. 
 
THE MEAN OF e IS E(e) = 0.  UNDER THE ASSUMPTION THAT THE ei ARE 
UNCORRELATED, THE COVARIANCE MATRIX OF e IS Inσ2 (WHERE In DENOTES THE 
n x n IDENTITY MATRIX). 
 
THE LEAST-SQUARES ESTIMATOR OF THE PARAMETER β IS 
 

�̂� = (𝑋′𝑋)−1𝑋′𝒚 
 
WHERE IT IS ASSUMED THAT THE MATRIX X’X IS INVERTIBLE. 
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IN MANY APPLICATIONS, THE ASSUMPTION THAT THE MODEL ERROR TERMS ARE 
UNCORRELATED IS REASONABLE, BUT IN MANY OTHERS, SUCH AS IN 
MULTIVARIATE ANALYSIS AND TIME-SERIES ANALYSIS, IT IS NOT.  IF IT IS 
ASSUMED THAT THE COVARIANCE MATRIX OF THE MODEL ERROR TERMS IS A 
GENERAL (SYMMETRIC, POSITIVE DEFINITE) MATRIX Σ, THEN THE LEAST SQUARES 
ESTIMATOR HAS THE FORM 
 

�̂� = (𝑋′𝛴−1𝑋)−1𝑋′Σ−1𝒚. 
 
(THIS RESULT IS OBTAINED DIRECTLY FROM THE FIRST ONE (COVARIANCE MATRIX 
Inσ2) BY MAKING THE TRANSFORMATION z = Σ-1/2y, WHICH HAS COVARIANCE 
MATRIX I, AND USING THE EARLIER ESTIMATOR.) 
 
THE MULTIVARIATE GENERAL LINEAR STATISTICAL MODEL IS A DIRECT EXTENSION 
OF THE UNIVARITE ONE.  INSTEAD OF A UNIVARIATE OBSERVATION yi, WE NOW 
HAVE A MULTIVARIATE OBSERVATION yi COMPOSED OF k-COMPONENT 
VECTORS.  THE PARAMETER VECTOR β MAY DIFFER FOR EACH COMPONENT (I.E., 
IS βi FOR THE i-th COMPONENT).  WE SHALL ASSUME THAT THE ERROR TERMS 
FOR A PARTICULAR COMPONENT HAVE ZERO MEAND AND ARE UNCORRELATED 
BETWEEN DIFFERENT SAMPLE OBSERVATIONS, BUT THAT THE COVARIANCE 
MATRIX WITHIN SAMPLE OBSERVATIONS IS Σe, A POSITIVE DEFINITE MATRIX. 
 
(NOTE ON NOTATION: EARLIER, WE USED p TO DENOTE THE NUMBER OF 
COMPONENTS OF A MULTIVARIATE VECTOR, AND WE ALSO USED p TO DENOTE 
THE NUMBER OF PARAMETERS IN A LINEAR MODEL, I.E., THE NUMBER OF 
COMPONENTS OF β.  IN WHAT FOLLOWS, WE SHALL USE k TO DENOTE THE 
NUMBER OF COMPONENTS IN A MULTIVARIATE VECTOR, AND p TO DENOTE THE 
NUMBER OF COMPONENTS IN β.) 
 
IN COMPACT FORM, THE FULL SAMPLE OF n OBSERVATIONS FOR THE 
MULTIVARIATE MODEL MAY BE WRITTEN AS 
 

𝑌 = 𝑋Β + 𝐸 
 
WHERE Y IS AN n x k MATRIX WITH ROW yi = (yi1,…,yik)’, X IS AN n x kp MATRIX 
(DESIGN MATRIX OR DATA MATRIX) OF EXPLANATORY VARIABLES, AND B IS A kp x 
k MATRIX OF PARAMETERS, AND E IS AN n x k MATRIX OF MODEL ERROR TERMS. 
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THIS COMPACT MULTIVARIATE FORM IS NOT THE FORM USED IN THE JUST-
DESCRIBED UNIVARIATE CASE.  THAT THEORY MAY BE APPLIED TO THE 
MULTIVARIATE CASE BY CONCATENATING THE SAMPLE VECTORS INTO A SINGLE 
COLUMN VECTOR.  THAT IS, THE PRECEDING MODEL MAY BE WRITTEN IN 
“STACKED” FORM AS 
 

𝑣𝑒𝑐(𝑌) = (𝐼𝑘 ⊗ 𝑋)𝑣𝑒𝑐(Β) + 𝑣𝑒𝑐(𝐸). 
 
DETERMINATION OF THE LEAST-SQUARES ESTIMATE FOR THE PARAMETER 
PROCEEDS IN THE SAME WAY AS USUAL, VIZ., BY MINIMIZING THE ERROR SUM 
OF SQUARES (BY SETTING PARTIAL DERIVATIVES OF THE ERROR SUM OF SQUARES 
EQUAL TO ZERO). 
 
SOME MATRIX MANIPULATIONS SHOW THAT THE LEAST-SQUARES ESTIMATOR 
FOR THIS MODEL IS 
 

Β̂ = (𝑋′𝑋)−1(𝑋′𝑌). 
 
THIS IS THE SAME FORM AS FOR THE UNIVARIATE CASE, WHERE THE n x 1 
VECTOR y HAS BEEN REPLACED BY THE n x k MATRIX Y AND THE DATA/DESIGN 
MATRIX X IS NOW AN n x kp MATRIX INSTEAD OF AN n x p MATRIX. 
 
NOTE THAT THE SOLUTION DOES NOT INVOLVE THE MATRIX Σe.  THE REASON FOR 
THIS IS THE ASSUMPTION THAT THERE IS NO CORRELATION BETWEEN VARIABLES 
IN DIFFERENT OBSERVATIONS.  THE ESTIMATES MAY BE DETERMINED 
SEPARATELY FOR EACH COMPONENT VARIABLE OF THE MULTIVARIATE VECTOR 
IN THE USUAL FASHION, USING EXACTLY THE SAME COMPUTATIONAL 
PROCEDURES AS IN THE UNIVARIATE CASE.  THIS SITUATION IS REFERRED TO AS 
“SEEMINGLY UNRELATED REGRESSIONS.” 
 

AS BEFORE, DEFINE THE MODEL RESIDUALS �̂�TO BE THE DIFFERENCES BETWEEN 
THE OBSERVED VALUES AND THE VALUES PREDICTED BY THE MODEL BY 
SUBSTITUTING THE LEAST-SQUARES ESTIMATES IN THE MODEL EQUATION.   LET 

Σ̃𝑒 DENOTE THE SAMPLE COVARIANCE MATRIX DEFINED BY 
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Σ̃𝑒 =
1

𝑛 − (𝑘 + 1)𝑝 − 1
�̂�′�̂�. 

 

THEN IT CAN BE SHOWN THAT THE LEAST-SQUARES ESTIMATE Β̂ IS UNBIASED 

(𝐸(Β̂) = Β); THE ESTIMATE Σ̃𝑒 IS UNBIASED (𝐸(Σ̃𝑒) = Σ𝑒; Β̂ AND  Σ̃𝑒 ARE 

UNCORRELATED; AND THE COVARIANCE MATRIX OF THE (STACKED) PARAMETER 
ESTIMATES IS 
 

𝐶𝑜𝑣[𝑣𝑒𝑐(Β̂)] = Σ̃𝑒 ⊗ (𝑋′𝑋)−1. 

 
THE LEAST-SQUARES ESTIMATES DO NOT DEPEND ON ANY DISTRIBUTIONAL 
ASSUMPTIONS ABOUT THE MODEL ERROR TERMS, OTHER THAN THEIR HAVING 
ZERO MEAN, NO CORRELATION BETWEEN OBSERVATIONS, AND COVARIANCE 
MATRIX Σ𝑒 WITHIN OBSERVATIONS.  IF IT IS ALSO ASSUMED THAT THE ERROR 
TERMS HAVE A MULTIVARIATE NORMAL DISTRIBUTION, THEN IT CAN BE SHOWN 

THAT THE MAXIMUM LIKELIHOOD ESTIMATE Β̂ OF B IS THE SAME AS THE LEAST-

SQUARES ESTIMATE; THAT THE MAXIMUM LIKELIHOOD ESTIMATE OF Σe IS Σ̃𝑒; 

THAT (n-p) Σ̃𝑒HAS A WISHART DISTRIBUTION Wk,n-(k+1)p-1; THAT 𝑣𝑒𝑐(Β̂) IS 
NORMALLY DISTRIBUTED WITH MEAN 𝑣𝑒𝑐(Β) AND COVARIANCE MATRIX Σ𝑒 ⊗
(𝑋′𝑋)−1;  𝑣𝑒𝑐(Β̂) IS INDEPENDENT OF Σ̃𝑒.  FURTHERMORE, THE ESTIMATES ARE 
ASYMPTOTICALLY NORMALLY DISTRIBUTED (SEE TSAY FOR MORE DETAILS.)  
THESE RESULTS MAY BE USED TO PERFORM TESTS OF HYPOTHESIS AND 
CONSTRUCT CONFIDENCE INTERVALS. 
 
TESTS OF HYPOTHESIS AND CONFIDENCE REGIONS 
 
FOR THE GENERAL LINEAR MODEL, TESTS OF HYPOTHESIS (AND CONFIDENCE 
REGIONS) ARE CONSTRUCTED USING THE LIKELIHOOD RATIO CRITERION.  MANY 
OF THE TESTS IN THE MULTIVARIATE CASE ARE ANALOGOUS TO THOSE OF THE 
UNIVARIATE CASE, SUCH AS TESTING WHETHER REGRESSION PARAMETERS ARE 
EQUAL TO ZERO.  THE ADDITIONAL COMPLEXITY OF THE MULTIVARIATE MODEL 
LEADS TO ADDITIONAL KINDS OF TEST, SUCH AS TESTS ABOUT MATRICES OF 
REGRESSION COEFFICIENTS. 
 
SEE ANDERSON FOR DISCUSSION OF THE TOPIC OF TESTS OF HYPOTHESIS AND 
CONFIDENCE REGIONS IN THE MULTIVARIATE CASE. 
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MULTIVARIATE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE 

 
THE GENERAL LINEAR MODEL INCLUDES THE METHODOLOGIES OF ANALYSIS OF 
VARIANCE AND ANALYSIS OF COVARIANCE AS SPECIAL CASES.  ANALYSIS OF 
VARIANCE ADDRESSES LINEAR MODELS IN WHICH EXPLANATORY VARIABLES ARE 
CATEGORICAL.  ANALYSIS OF COVARIANCE ADDRESSES LINEAR MODELS IN WHICH 
MAJOR EXPLANATORY VARIABLES ARE CATEGORICAL, AND A FEW VARIABLES ARE 
CONTINUOUS.  THESE METHODOLOGIES ARE USED IN EXPERIMENTAL DESIGNS, 
WHERE THE EXPERIMENTER HAS CONTROL OVER THE MAIN EXPLANATORY 
VARIABLES.  FOR THESE METHODOLOGIES, RESULTS ARE PRESENTED IN SPECIAL 
TABLES (VIZ., ANALYSIS OF VARIANCE TABLES AND ANALYSIS OF COVARIANCE 
TABLES). 
 
THESE TOPICS ARE NOT ADDRESSED IN THIS PRESENTATION (EITHER IN THE 
UNIVARIATE CASE OR THE MULTIVARIATE CASE), BUT MAY BE THE SUBJECT OF A 
FUTURE PRESENTATION (ON EXPERIMENTAL DESIGN). 
 

TESTS FOR INDEPENDENCE 

 
A PROBLEM THAT ARISES IN MULTIVARIATE IS THAT OF DIVIDING A 
MULTIVARIATE VECTOR INTO SETS OF VARIATES, AND TESTING WHETHER THE 
SETS ARE MUTUALLY INDEPENDENT, I.E., WHETHER EACH MEMBER OF ONE SET IS 
UNCORRERATED WITH EACH VARIABLE OF ANOTHER SET. 
 
THE METHODOLOGY FOR MULTIVARIATE TESTS FOR INDEPENDENCE IS SIMILAR 
TO THAT FOR THE TESTS OF HYPOTHESIS FOR THE MULTIVARIATE GENERAL 
LINEAR MODEL.  FOR THE MULTIVARIATE NORMAL DISTRIBUTION, A TEST OF 
INDEPENDENCE MAY BE FORMULATED AS A TEST ABOUT THE STRUCTURE OF THE 
COVARIANCE MATRIX, I.E., WHETHER CERTAIN SUBMATRICES ARE ZERO.  THE 
LIKELIHOOD RATIO PROCEDURE IS USED TO CONSTRUCT A TEST.  THE TESTS MAY 
BE FORMULATED IN TERMS OF GENERALIZED VARIANCES. 
 
SEE ANDERSON FOR DETAILS. 
 

PRINCIPAL COMPONENTS ANALYSIS 
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A FUNDAMENTAL DIFFICULTY WITH MULTIVARIATE ANALYSIS IS THE LARGE 
NUMBER OF PARAMETERS INVOLVED IN MULTIVARIATE MODELS.  AS 
MENTIONED EARLIER, THE NUMBER OF PARAMETERS IN A BASIC k-DIMENSIONAL 
MULTIVARIATE NORMAL DISTRIBUTION IS k MEANS, k VARIANCES AND (k2 – k)/2 
COVARIANCES, FOR A TOTAL OF (k2 -k)/2 + 2k PARAMETERS.  A MULTIVARIATE 
GENERAL LINEAR MODEL THAT INCLUDES p EXPLANATORY VARIABLES INCLUDES 
pk PARAMETERS FOR THE MEAN.  IF THERE IS NO INTERCORRELATION AMONG 
SAMPLE OBSERVATIONS, THEN THE NUMBER OF VARIANCES AND COVARIANCES 
IS THE SAME AS FOR THE BASIC MULTIVARIATE DISTRIBUTION, BUT IF THERE ARE 
CORRELATIONS AMONG SAMPLE OBSERVATIONS (AS IS THE CASE IN TIME SERIES 
ANALYSIS), THE NUMBER OF PARMATERS MAY BE MUCH LARGER. 
 
MODELS HAVING LARGE NUMBER OF PARAMETERS POSSESS AN INHERENT 
DANGER FOR MANY APPLICATIONS (SUCH AS FORECASTING), IN THAT THE 
MODEL MAY FIT THE DATA WELL AND YET FORECAST POORLY.  IT IS USEFUL, 
THEREFORE, TO APPLY METHODS TO SIMPLIFY THE MODELS.  THIS CAN BE DONE 
IN A NUMBER OF WAYS, SUCH AS BY MAKING SIMPLIFYING ASSUMPTIONS 
(JUSTIFIED BY SUBSTANTIVE THEORY) OR BY COMBINING VARIABLES OR 
ELIMINATING VARIABLES. 
 
WITH RESPECT TO COMBINING VARIABLES AND DROPPING VARIABLES, A 
POWERFUL TOOL IS THE METHOD OF PRINCIPAL COMPONENTS.  AS DISCUSSED 
EARLIER, THE METHOD OF PRINCIPAL COMPONENTS IS THE APPLICATION OF A 
LINEAR TRANSFORMATION OF THE ORIGINAL MULTIVARIATE VECTOR TO A NEW 
VECTOR HAVING USEFUL STATISTICAL PROPERTIES.  SPECIFICALLY, THE ORIGINAL 
COORDINATE SYSTEM IS ROTATED IN SUCH A WAY THAT THE FIRST VARIABLE OF 
THE NEW COORDINATE SYSTEM HAS MAXIMUM VARIANCE, THE SECOND 
VARIABLE HAS MAXIMUM VARIANCE OUT OF ALL VARIABLES ORTHOGONAL TO 
THE FIRST VARIABLE, THE THIRD VARIABLE HAS MAXIMUM VARIANCE OUT OF ALL 
VARIABLES ORTHOGONAL TO THE FIRST TWO, AND SO ON. 
 
THE EARLIER DISCUSSION ADDRESSED THE ISSUE OF PRINCIPAL COMPONENTS IN 
THE POPULATION, I.E., IT WAS ASSUMED THAT THE PARAMETERS OF THE 
MULTIVARIATE DISTRIBUTION WERE KNOWN.  THIS SECTION ADDRESSES THE 
SITUATION IN WHICH THE DISTRIBUTION PARAMETERS ARE ESTIMATED. 
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THE PRINCIPAL COMPONENTS ARE THE EIGENVECTORS OF THE COVARIANCE 
MATRIX, WHERE THE LENGTH OF EACH EIGENVECTOR IS THE CORRESPONDING 
EIGENVALUE.  THE EIGENVALUES ARE THE SOLUTIONS (λ1,…,λp) TO THE 
EQUATION 
 

|Σ − 𝜆𝐼| = 0, 
 
AND THE EIGENVECTORS ARE THE SOLUTIONS (b1,…,bp) TO THE EQUATION 
 

(Σ − λI)𝐛 = 𝟎. 
 
LET US DEFINE THE MATRIX Λ AS 
 

Λ = [

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑝

]. 

 
THE PROBLEM IS TO ESTIMATE ALL OF THE PARAMETERS µ, Σ, Λ AND B = (b1,…,bp).  
THIS IS DONE, AS USUAL, BY THE METHOD OF MAXIMUM LIKELIHOOD. 
 
IT IS A FACT THAT THE MAXIMUM LIKELIHOOD ESTIMATOR OF A FUNCTION OF A 
PARAMETER IS THE FUNCTION OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF 
THE PARAMETER.  SINCE Λ AND B ARE FUNCTIONS OF µ AND Σ, IT FOLLOWS THAT 
THE MAXIMUM LIKELIHOOD ESTIMATORS OF Λ AND B ARE OBTAINED USING THE 
SAME EQUATIONS GIVEN ABOVE FOR DETERMINING Λ AND B, SIMPLY BY 

REPLACING µ AND Σ BY THEIR MAXIMUM LIKELIHOOD ESTIMATORS (�̂� AND Σ̂). 
 
AS DISCUSSED EARLIER, THE METHOD OF PRINCIPAL COMPONENTS IS A METHOD 
OF ROTATING THE AXES OF A MULTIVARIATE DISTRIBUTION (I.E., TRANSFORMING 
THE COMPONENT VARIABLES OF A MULTIVARIATE VECTOR) SUCH THAT THE 
FIRST PRINCIPAL COMPONENT HAS MAXIMUM VARIANCE, THE SECOND 
PRINCIPAL COMPONENT HAS MAXIMUM VARIANCE, OUT OF ALL VARIABLES 
ORTHOGONAL TO THE FIRST, AND SO ON. 
 
SINCE THE MATRIX TRANSFORMATIONS INVOLVED IN THE METHOD OF PRINCIPAL 
COMPONENTS ARE ORTHONORMAL, THE DETERMINANT OF THE COVARIANCE 
MATRICES OF THE ORIGINAL AND TRANSFORMED VARIABLES HAS THE SAME 
VALUE.  ALSO, THE TRACE OF THE COVARIANCE (SUM OF THE DIAGONAL ENTRIES, 
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AND ALSO THE SUM OF THE CHARACTERISTIC ROOTS) HAS THE SAME VALUE.  THE 
METHOD OF PRINCIPAL COMPONENTS IS SIMPLY A METHOD OF TRANSFORMING 
VARIABLES TO NEW VARIABLES IN SUCH A WAY THAT THE TOTAL VARIANCE (AS 
REPRESENTED BY THE TRACE) IS DECOMPOSED. 
 
FROM AN INFORMATION-THEORETIC VIEWPOINT, THE AMOUNT OF 
INFORMATION ASSOCIATED WITH A VARIABLE IS INVERSELY PROPORTIONAL TO 
THE VARIANCE OF THE VARIABLE. 
 
A DIFFICULTY WITH TRANSFORMED VARIABLES IS THEIR INTERPRETATION.  THE 
METHOD OF PRINCIPAL COMPONENTS IS APPROPRIATE FOR TRANSFORMING 
VARIABLES OF A COMMON METRIC, FOR WHICH THE LINEAR COMBINATIONS OF 
THE VARIABLES HAVE A REASONABLE MEANING (INTERPRETATION).  FOR 
EXAMPLE, A SET OF 15 MEASURMENTS MAY BE TAKEN ON ANIMAL SKULLS.  
USING THE METHOD OF PRINCIPAL COMPONENTS, IT MAY BE TURN OUT THAT 
THE FIRST PRINCIPAL COMPONENT IS APPROXIMATELY EQUAL TO THE SUM OF 
THE HEIGHT, WIDTH AND DEPTH OF THE SKULL, AND THAT THE OTHER PRINCIPAL 
COMPONENTS ARE VERY SMALL.  THAT IS, MOST OF THE VARIATION IN SKULL 
DIMENSIONS IS SUMMARIZED IN THIS SINGLE VARIABLE.  IN SOME APPLICATIONS, 
THE ORIGINAL 15 MEASUREMENTS MAY BE REPLACED BY A SINGLE VARIABLE, 
WHICH CONTAINS MOST OF THE INFORMATION INHERENT IN THE ORIGINAL 15 
VARIABLES.  
 

FACTOR ANALYSIS 

 
IN THE METHOD OF PRINCIPAL COMPONENTS, INTEREST FOCUSSES ON THE 
LARGER CHARACTERISTIC ROOTS.  IF THE GOAL IS TO SIMPLIFY A PROBLEM BY 
REDUCING THE NUMBER OF COMPONENTS OF THE MULTIVARIATE VECTOR, THEN 
ONE APPROACH IS TO DISCARD VARIABLES ASSOCIATED WITH THE SMALLER 
CHARACTERISTIC ROOTS.  THIS MAY BE DONE IN AN AD HOC MANNER, BUT A 
MORE STANDARD PROCEDURE IS THE METHOD OF FACTOR ANALYSIS. 
 
IN FACTOR ANALYSIS IT IS ASSUMED THAT THE MULTIVARIATE VECTOR X MAY BE 
REPRESENTED AS 
 

𝑋 = Λ𝒇 + 𝝁 + 𝑼 
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WHERE f IS AN m-COMPONENT VECTOR OF NONOBSERVABLE FACTOR SCORES, µ 
IS A VECTOR OF MEANS, AND U IS A VECTOR OF NONOBSERVABLE ERRORS.  THE p 
x m MATRIX Λ (m < p) IS CALLED A MATRIX OF FACTOR LOADINGS.  IT IS ASSUMED 
THAT f IS A RANDOM VARIABLE WITH E(f) = 0 AND Eff’ = M; IT IS ALSO ASSUMED 
THAT E(U) = 0 AND E(UU’) = Ψ, A DIAGONAL MATRIX, AND E(fU’) = 0. 
 
UNDER THESE ASSUMPTIONS E(X) = µ AND 
 

𝐸(𝑿 − 𝝁)(𝑿 − 𝝁)′ = Λ𝑀Λ′ + Ψ. 
 
A PROBLEM WITH THIS MODEL IS THAT IT IS NOT KNOWN WHAT COVARIANCE 
MATRICES CAN BE REPRESENTED BY THE PRECEDING EXPRESSION OF GIVEN m, 
AND IF SUCH MATRICES EXIST, WHAT RESTRICTIONS ON Λ AND M MAKE THEM 
UNIQUE.  IN OTHER WORDS, THERE MAY NOT EXIST A MULTIVARIATE NORMAL 
RANDOM VARIABLE X SATISFYING THE PRECEDING MODEL. 
 
TO ADDRESS THIS ISSUE, THE ASSUMPTION OF NORMALITY OF X MUST BE 
DROPPED.  A VARIETY OF METHODS MAY BE USED TO ESTIMATE THE 
PARAMETERS OF THE FACTOR MODEL (Λ, M AND Ψ). THE METHOD OF MAXIMUM 
LIKELIHOOD MAY BE USED, BUT PROBLEMS ARE ENCOUNTERED SINCE THE 
MODEL IS NOT UNIQUE (I.E., THERE ARE MANY ALTERNATIVE REPRESENTATIONS, 
OR SELECTIONS OF FACTORS f). ALTERNATIVE ESTIMATION METHODS INCLUDE 
THE CENTROID METHOD AND THE METHOD OF PRINCIPAL COMPONENTS.   
 
DESPITE THESE PROBLEMS, CONSIDERABLE USE IS MADE OF THE PRECEDING 
MODEL.  FOR THE PROBLEM OF DECIDING WHICH VARIABLES TO DISCARD FROM 
A MULTIVARIATE VECTOR WITH RELATIVELY LITTLE REDUCTION IN THE TOTAL 
VARIANCE, IT IS USED TO DETERMINE A REASONABLE VALUE FOR m.  A PRIMARY 
CONSIDERATION IN FACTOR ANALYSIS IS THE IDENTIFICATION OF FACTORS 
(LINEAR COMBINATIONS OF THE ORIGINAL VARIABLES) THAT HAVE A 
REASONABLE MEANING.  IN THE SEARCH FOR SUCH REPRESENTATIONS, A 
VARIETY OF AXIS ROTATIONS MAY BE CONSIDERED. 
 
THE REFERENCES PROVIDED EARLIER BY LAWLY AND MAXWELL, AND BY 
HARMON, MAY BE CONSULTED FOR ADDITIONAL DETAILS ON THIS METHOD. 
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CANONICAL CORRELATION 

 
ESTIMATION OF CANONICAL CORRELATIONS AND CANONICAL VARIATES 
PROCEEDS BY MAKING THE SAME CALCULATIONS ON THE SAMPLE CORRELATION 

MATRIX, Σ̂, AS ARE USED TO OBTAIN THE POPULATION CANONICAL 
CORRELATIONS. 
 

CLASSIFICATION ANALYSIS 

 
IN THE PRECEDING DISCUSSION OF CLASSIFICATION ANALYSIS, A PROCEDURE 
WAS PRESENTED THAT MINIMIZES THE EXPECTED COST OF MISCLASSIFICATION.  
THE CLASSIFICATION CRITERION WAS BASED ON KNOWN PROBABILITIES.  IT 
CANNOT BE PROVED, HOWEVER, THAT THE DESCRIBED PROCEDURE MINIMIZES 
THE EXPECTED COST IN THE CASE WHERE THE PROBABILITIES ARE ESTIMATED.  
THE CRITERION APPEARS REASONABLE, HOWEVER, AND IS USED. 
 

MULTIVARIATE TIME SERIES MODELS (SUMMARY) 

 
A PRECEDING SECTION DESCRIBED THE CLASS OF BOX-JENKINS MODELS, WHICH 
ARE USED AS A BASIS FOR FORECASTING AND CONTROL IN BOTH THE 
UNIVARIATE AND MULTIVARIATE CASES.  DETAILED DISCUSSION OF THE 
PROCEDURES FOR DEVELOPING BOX-JENKINS MODELS IS THE SUBJECT OF A 
SEPARATE PRESENTATION. 
 
THE METHODOLOGY FOR ESTIMATING A MULTIVARIATE BOX-JENKINS MODEL 
FROM SAMPLE DATA PARALLELS THAT FOR A UNIVARIATE MODEL.  IT MAKES 
HEAVY USE OF LEAST-SQUARES THEORY, AND ITERATIVE APPLICATION OF THE 
STEPS OF MODEL IDENTIFICATION, ESTIMATION AND TESTING. 
 
WHILE MUCH OF THE METHODOLOGY IS SIMILAR IN THE MULTIVARIATE AND 
UNIVARIATE CASES, THERE ARE SOME DIFFERENCES.  ONE AREA OF DIFFERENCE 
INVOLVES THE FORECASTING ONCE COMPONENT OF A MULTIVARIATE VECTOR, 
CONDITIONAL ON THE VALUES OF OTHER COMPONENTS.  THE PROBLEM THAT 
ARISES IS THAT IF A FUTURE VALUE OF ONE COMPONENT IS SPECIFIED, IT IS NOT 
REASONABLE TO BELIEVE THAT THE OTHER VARIABLES MAY BE HELD CONSTANT, 
IF THE VARIABLES ARE CORRELATED.  AN APPROACH TO HANDLING THIS 
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PROBLEM IS TO APPLY THE MULTIVARIATE PROCEDURE OF PRINCIPAL 
COMPONENTS TO ORTHOGONALIZE THE VECTOR SO THAT THE COMPONENTS 
ARE ORTHOGONAL.  IN THAT CASE, IT IS REASONABLE TO CONDITION ON ONE OF 
THEM, HOLDING THE OTHERS FIXED.  AS USUAL, THIS APPROACH IS USEFUL IF A 
MEANINGFUL INTERPRETATION CAN BE GIVEN TO THE TRANSFORMED 
VARIABLES. 
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