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1. OVERVIEW 

 
THIS PRESENTATION IS A SURVEY OF THE BASIC CONCEPTS OF DISCRETE 
MULTIVARIATE TIME SERIES ANALYSIS.  IT BUILDS ON MATERIAL PRESENTED IN 
OTHER PRESENTATIONS ON DISCRETE UNIVARIATE TIME SERIES ANALYSIS AND 
CONTINUOUS MULTIVARIATE STATISTICAL ANALYSIS. 
 
THE PRESENTATION PRESENTS KEY RESULTS, BUT NOT MATHEMATICAL PROOFS.  
MATHEMATICAL DETAILS ARE PRESENTED IN THE FOLLOWING REFERENCES. 
 
BOX, G. E. P., AND GWILYM JENKINS, TIME SERIES ANALYSIS, FORECASTING 
CONTROL, FIRST EDITION HOLDEN-DAY, 1970, LATEST ADDITION IS 5TH EDITION BY 
GEORGE E. P. BOX, GWILYM M. JENKINS, GREGORY C. REINSEL AND GRETA M. 
LJUNG, WILEY, 2016.  (IN THIS PRESENTATION, THIS REFERENCE WILL BE 
REFERRED TO AS BJRL.) 
 
TSAY, RUEY S., MULTIVARIATE TIME SERIES ANALYSIS WITH R AND FINANCIAL 
APPLICATIONS, WILEY, 2014.  (THIS REFERENCE WILL BE REFFERRED TO AS TSAY 
MSTA.) 
 
LÜTKEPOHL, HELMUT, NEW INTRODUCTION TO MULTIPLE TIME SERIES ANALYSIS, 
SPRINGER, 2006 
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HAMILTON, JAMES D., TIME SERIES ANALYSIS, PRINCETON UNIVERSITY PRESS, 
1994 
 
THE PRESENTATION INCLUDES FOUR ADDITIONAL MAJOR SECTIONS: 
 

• SUMMARY OF SINGLE-VARIABLE UNIVARIATE TIME SERIES ANALYSIS 
 

• SUMMARY OF MULTIVARIABLE UNIVARIATE TIME SERIES MODELS 
 

• GENERAL MULTIVARIATE TIME SERIES ANALYSIS 
 

• TIME SERIES ANALYSIS SOFTWARE 
 
A DETAILED DESCRIPTION OF UNIVARIATE TIME SERIES MODELS IS PRESENTED IN 
THE TIMES TECHNICAL MANUAL, POSTED AT INTERNET WEBSITE 
http://www.foundationwebsite.org/TIMESVol1TechnicalBackground.pdf. 

2. SUMMARY OF SINGLE-VARIABLE UNIVARIATE TIME SERIES 

ANALYSIS 

 
THIS PRESENTATION BEGINS WITH A REVIEW OF CONCEPTS FROM SINGLE-
VARIABLE UNIVARIATE TIME SERIES ANALYSIS (OR SCALAR TIME SERIES 
ANALYSIS).  IN THIS SECTION, ATTENTION FOCUSES ON A SINGLE SCALAR 
RANDOM VARIABLE. 
 
REFERENCES TREATING SINGLE-VARIABLE UNIVARIATE TIME SERIES INCLUDE: 
 

BOX, GEORGE E. P., GWILYM M. JENKINS, GREGORY C. REINSEL AND GRETA 
M. LYUNG, TIME SERIES ANALYSIS, FORECASTING AND CONTROL, 5TH ED., 
WILEY, 2016 
 
CRYER, JONATHAN D. AND KUNG-SIK CHAN, TIME SERIES ANALYSIS WITH 
APPLICATIONS IN R, 2ND ED., SPRINGER, 2008 

 

http://www.foundationwebsite.org/TIMESVol1TechnicalBackground.pdf
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MAJOR FEATURES OF TIME SERIES 

 
A TIME SERIES IS A SET OF RANDOM VARIABLES HAVING A TIME INDEX: {X(t), tєT}, 
OR X1, X2,…,Xt.,,,.  A TIME SERIES IS CALLED DISCRETE OR CONTINUOUS 
ACCORDING AS THE INDEX SET T IS DISCRETE OR CONTINUOUS.  FOR THIS 
PRESENTATION, AND FOR MOST APPLICATIONS, THE TIME INDEX IS THE SET OF 
INTEGERS, 1, 2, …, AND THE TIMES TO WHICH THEY CORRESPOND ARE EQUALLY 
SPACED AND SUCCESSIVE IN TIME (E.G., HOURLY, DAILY, OR MONTHLY 
OBSERVATIONS OF A PHENOMENON OR PROCESS, SUCH AS TEMPERATURE OR 
STOCK PRICE). 
 
IN GENERAL, THE RANDOM VARIABLE Xt MAY BE A VECTOR.  IN THIS SECTION, IT 
IS A SINGLE-COMPONENT VECTOR, I.E., A SCALAR. 
 
Figure: Example of a time series. 
 

TIME SERIES DESCRIPTORS: MEAN, VARIANCE, COVARIANCE, ACF, PACF, SDF, 

STATIONARITY, HOMOGENEOUS NONSTATIONARITY, HETEROSCEDASTICITY 

 
A STRICTLY STATIONARY (OR STRONGLY STATIONARY) TIME SERIES (OR 
STOCHASTIC PROCESS) IS ONE FOR WHICH THE JOINT DISTRIBUTION OF THE 
RANDOM VARIABLES 𝑋𝑡1,𝑋𝑡2 , … , 𝑋𝑡𝑚  IS THE SAME AS THE DISTRIBUTION OF THE 

RANDOM VARIABLES 𝑋𝑡1+𝑘,𝑋𝑡2+𝑘, … , 𝑋𝑡𝑚+𝑘 FOR ANY VALUE OF k.  LET US 

DENOTE THIS COMMON DISTRIBUTION AS F(X).  FOR THIS PRESENTATION, WE 
SHALL ASSUME THAT THE RANDOM VARIABLE IS CONTINUOUS, WITH DENSITY 
FUNCTION f(X). 
 
CONSIDERING THE CASE m = 1, THE DEFINITION OF STRICT STATIONARITY IMPLIES 
THAT THE MEAN OF THE TIME SERIES IS THE SAME FOR ALL VALUES OF t, AND 
THE VARIANCE IS ALSO THE SAME FOR ALL VALUES OF t. 
 
CONSIDERING THE CASE m = 2, THE DEFINITION OF STRICT STATIONARITY IMPLIES 
THAT THE COVARIANCE OF ANY TWO RANDOM VARIABLES OF THE TIME INDEX 
SET, Xt AND Xt+k, IS THE SAME FOR ALL VALUES OF t. 
 
FOR A STRICTLY STATIONARY SERIES, THE MEAN MAY BE ESTIMATED IN TWO 
WAYS: BY OBSERVING A SIMPLE RANDOM SAMPLE OF Xt AT A FIXED TIME t AND 
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AVERAGING; OR BY OBSERVING A SAMPLE OF Xt FOR DIFFERENT TIMES t AND 
AVERAGING.  IN REALITY, IT MAY BE IMPOSSIBLE OR IMPRACTICAL TO TAKE A 
SAMPLE AT A FIXED TIME.  THESE TWO MEANS ARE CALLED THE TIME AVERAGE 
AND THE ENSEMBLE AVERAGE.  FOR A STRICTLY STATIONARY TIME SERIES, THESE 
TWO AVERAGES ARE THE SAME.  THIS PROPERTY IS CALLED ERGODICITY, AND THE 
TIME SERIES IS SAID TO BE ERGODIC.  IN WHAT FOLLOWS, WE WILL ESTIMATE 
THE MEAN OF THE TIME SERIES (AND OTHER PROPERTIES, SUCH AS THE 
VARIANCE AND COVARIANCE) USING THE TIME AVERAGE. 
 
AN OBSERVED TIME SERIES IS SAID TO BE A SINGLE REALIZATION OF AN 
UNDERLYING STOCHASTIC PROCESS (ABSTRACT OR REAL) THAT IS SAID TO 
GENERATE THE REALIZIATION.  CONCEPTUALLY, THE UNDERLYING STOCHASTIC 
PROCESS COULD CONCEIVABLY GENERATE MANY ALTERNATIVE TIME SERIES, BUT 
IN MOST PRACTICAL APPLICATIONS ONLY ONE SERIES IS OBSERVED (SINCE TIME 
FLOWS AND WE MAY HAVE ONLY ONE CHANCE TO MAKE AN OBSERVATION AT A 
SPECIFIED TIME).  THE UNDERLYING STOCHASTIC PROCESS IS ALSO CALLED THE 
DATA GENERATING PROCESS (DGP). 
 
THE TERMS TIME SERIES AND STOCHASTIC PROCESS ARE USED SOMEWHAT 
INTERCHANGEABLY.  THE TERM TIME SERIES IS USED MORE IN REFERRING TO A 
PARTICULAR OBSERVED REALIZATION OF A STOCHASTIC PROCESS, AND THE TERM 
STOCHASTIC PROCESS FOR THE THEORETICAL (UNREALIZED, MATHEMATICAL, 
CONCEPTUAL) MODEL THAT GENERATES THE REALIZATION. 
 
NOTE THAT A SAMPLE OF OBSERVATIONS OVER TIME IS NOT, IN GENERAL, A 
SIMPLE RANDOM SAMPLE.  THE MEMBERS OF A SAMPLE OF OBSERVATIONS 
FROM A REALIZATION OF A STOCHASTIC PROCESS ARE TYPICALLY CORRELATED.  
IF THEY ARE GENERATED BY AN UNDERLYING CONTINUOUS PROCESS, THE 
CORRELATION BETWEEN NEARBY OBSERVATIONS TYPICALLY INCREASES AS THE 
TIME DISTANCE BETWEEN THE OBSERVATIONS DECREASES.  FOR THIS REASON, 
THE PRECISION OF A TIME AVERAGE TYPICALLY DIFFERS FROM THAT OF AN 
ENSEMBLE AVERAGE OF THE SAME SAMPLE SIZE. 
 
STRICT STATIONARITY IS DIFFICULT TO ESTABLISH.  A MORE USEFUL CONCEPT OF 
STATIONARITY IS WEAK STATIONARITY.  A TIME SERIES IS WEAKLY STATIONARY IF 
THE MEAN AND VARIANCE ARE CONSTANT OVER TIME (I.E., THE MEAN AND 
VARIANCE OF Xt ARE CONSTANT FOR ALL VALUES OF THE INDEX t), AND THE 
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COVARIANCE BETWEEN ANY TWO VARIABLE Xt AND Xt+k IS CONSTANT FOR A 
SPECIFIED VALUE OF k.  (WEAK STATIONARITY IS ALSO CALLED SECOND-ORDER 
STATIONARITY OR COVARIANCE STATIONARITY.) 
 
IN THIS PRESENTATION WE WILL BE WORKING WITH WEAK STATIONARITY, NOT 
STRICT STATIONARITY. 
 
EXAMPLES: 
 
Note: This version of the presentation does not include figures. 
 
Figure: Example of stationary time series. 
 
Figure: Example of a nonstationary time series exhibiting explosive behavior. 
 
Figure: Example of nonseasonal homogeneous nonstationary time series. 
 
Figure: Example of seasonal homogeneous nonstationary time series. 
 
Figure: Example of heteroscedastic nonstationary time series. 
 
THE MEAN OF A STATIONARY STOCHASTIC PROCESS IS: 
 

𝜇 = 𝐸(𝑧𝑡) = ∫ 𝑧𝑝(𝑧)𝑑𝑧.
∞

−∞

 

 
THE VARIANCE IS: 
 

𝜎𝑧
2 = 𝐸[(𝑧𝑡 − 𝜇)

2] = ∫ (𝑧 − 𝜇)2𝑝(𝑧)𝑑𝑧.
∞

−∞

 

 
AND THE AUTOCOVARIANCE AT LAG k IS: 
 

𝛾𝑘 = 𝑐𝑜𝑣(𝑧𝑡 , 𝑧𝑡+𝑘) = 𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+𝑘 − 𝜇). 
 
THE AUTOCORRELATION AT LAG k IS: 
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𝜌𝑘 =
𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+𝑘 − 𝜇)

√𝐸[(𝑧𝑡 − 𝜇)
2]𝐸[(𝑧𝑡+𝑘 − 𝜇)

2]
=
𝛾𝑘
𝜎𝑧
2
=
𝛾𝑘
𝛾0
. 

 
THE SEQUENCE OF AUTOCOVARIANCES FOR LAGS k = 1, 2, … IS CALLED THE 
AUTOCOVARIANCE FUNCTION, AND THE SEQUENCE OF AUTOCORRELATIONS FOR 
LAGS k = 1, 2,… IS CALLED THE AUTOCORRELATION FUNCTION.  THE 
AUTOCORRELATION FUNCTION IS DENOTED AS ACF. 
 
THE COSINE FOURIER TRANSFORM OF THE AUTOCOVARIANCE FUNCTION IS 
CALLED THE POWER SPECTRUM (OR SIMPLY, THE SPECTRUM). 
 

𝑝(𝑓) = 2[𝛾0 + 2∑ 𝛾𝑘cos⁡(2𝜋𝑓𝑘)], 0 ≤ 𝑓 ≤
1

2
.

∞

𝑘=1
 

 
THE POWER SPECTRUM IS A MEASURE OF THE DISTRIBUTION OF THE VARIANCE 
OF A TIME SERIES OVER A RANGE OF FREQUENCIES.  (SEE BJRL FOR DISCUSSION.) 
 
INTEGRATING THE PRECEDING FUNCTION OVER ITS RANGE, WE OBTAIN: 
 

∫ 𝑝(𝑓)𝑑𝑓 = 𝛾0 = 𝜎𝑧
2

1/2

0

 

 
THE POWER SPECTRUM CONTAINS ALL OF THE INFORMATION IN THE 
AUTOCOVARIANCE FUNCTION; EITHER ONE MAY BE CONSTRUCTED FROM THE 
OTHER.  THE POWER SPECTRUM IS OF DIRECT INTEREST IN PHYSICAL 
APPLICATIONS INVOLVING DETERMINISTIC FREQUENCIES, BUT ALSO OF INTEREST 
FOR TESTING THE ADEQUACY OF TENTATIVE MODELS IN GENERAL. 
 
THE FORMULA FOR THE AUTOCOVARIANCE FUNCTION IN TERMS OF THE POWER 
SPRECTRUM IS: 
 

𝛾𝑘 = ∫ cos(2𝜋𝑓𝑘) 𝑝(𝑓)𝑑𝑓.
1/2

0

 

 
THE SPECTRAL DENSITY FUNCTION IS THE POWER SPECTRUM NORMALIZED BY 
DIVIDING BY THE VARIANCE: 
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𝑔(𝑓) =
𝑝(𝑓)

𝜎𝑧
2
= 2[1 + 2∑ 𝜌𝑘cos⁡(2𝜋𝑓𝑘)], 0 ≤ 𝑓 ≤

1

2
.

∞

𝑘=1
 

 
THE SPECTRAL DENSITY FUNCTION HAS THE SAME PROPERTIES AS AN ORDINARY 
PROBABILITY DENSITY FUNCTION, I.E., IT IS POSITIVE AND INTEGRATES TO ONE. 
 
LET x = (x1,…,xn)’ DENOTE A SEQUENCE OF n OBSERVATIONS FROM A TIME SERIES 
REALIZATION (OBSERVATION) OF A STOCHASTIC PROCESS, WHERE n DENOTES 
THE NUMBER OF TIME POINTS IN THE OBSERVED SEQUENCE. 
 
(IN THIS PRESENTATION WE SHALL USUALLY DENOTE ROW VECTORS, SUCH AS A 
SEQUENCE OF OBSERVED VALUES OF A TIME SERIES, USING PRIMED BOLD-FACE 
LETTERS.  IN GENERAL, ABSTRACT (CONCEPTUAL, THEORETICAL) RANDOM 
VARIABLES WILL BE DENOTED BY UPPER-CASE LETTERS AND REALIZED VALUES BY 
LOWER-CASE LETTERS.  THIS PRACTICE IS NOT UNIVERSAL, HOWEVER, AND WE 
MAY DEPART FROM IT IN ORDER TO FOLLOW THE NOTATION OF A CITED AUTHOR 
(AND REPRESENT ABSTRACT RANDOM VARIABLES IN EITHER UPPOR OR LOWER 
CASE).  VECTORS ARE SHOWN IN BOLDFACE FONT.  MATRICES ARE SHOWN IN 
NON-BOLDFACE FONT.  (THIS LAST CONVENTION IS NOT STANDARD, AND WILL BE 
CHANGED IN A SUBSEQUENT VERSION.)  
 
THE SAMPLE ESTIMATES OF THE MEAN, VARIANCE AND AUTOCOVARIANCE AT 
LAG k ARE: 
 

𝑧̅ =
1

𝑛
∑ 𝑧𝑡,

𝑛

𝑡=1
 

 

𝜎̂𝑧
2 =

1

𝑛
∑ (𝑧𝑡 − 𝑧̅)

2,
𝑛

𝑡=1
 

 
AND 
 

𝛾̂𝑘 = 𝑐𝑘 = 𝑐𝑜𝑣̂(𝑧𝑡 , 𝑧𝑡+𝑘) =
1

𝑛 − 𝑘
∑ [(𝑧𝑡 − 𝑧̅)(𝑧𝑡+𝑘 − 𝑧̅)

𝑛

𝑡=𝑘+1
]. 
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NOTE THAT IT IS CUSTOMARY IN TIME SERIES ANALYSIS TO USE A DIVISOR n 
INSTEAD OF n-1 IN THE EXPRESSION 𝜎̂𝑧

2 FOR THE ESTIMATED MEAN.  IF THE 
DIVISOR n-1 IS USED, THE SYMBOL 𝑠𝑧

2 IS USED. 
 
THE AUTOCORRELATION AT LAG k IS ESTIMATED AS: 
 

𝜌̂ =
𝛾̂𝑘
𝛾̂0
. 

 
AUTOCOVARIANCE AND AUTOCORRELATION MATRICES MAY BE FORMED FOR 
THE VARIATES COMPRISING A TIME SERIES, BUT, FOR A STATIONARY SERIES, THEY 
ARE HIGHLY REDUNDANT, SINCE ALL ENTRIES ALONG ANY DIAGONAL 
PARALLELLING THE TOP-LEFT TO LOWER-RIGHT PRINCIPAL DIAGONAL ARE 
IDENTICAL.  FOR THIS REASON, FOR UNIVARIATE TIME SERIES, ATTENTION 
FOCUSES ON THE AUTOCOVARIANCE FUNCTION AND AUTOCORRELATION 
FUNCTION, NOT ON THE FULL AUTOCOVARIANCE AND AUTOCORRELATION 
MATRICES FOR A LONG TIME SERIES.  AUTOCOVARIANCE AND 
AUTOCORRELATION MATRICES ARE OF INTEREST, HOWEVER, FOR SHORT SERIES.  
THE AUTOCORRELATION FUNCTION IS SIMPLY THE LIST OF ENTRIES ALONG THE 
DIAGONAL (OF THE AUTOCORRELATION MATRIX) GOING FROM UPPER RIGHT TO 
LOWER LEFT. 
 
THE SAMPLE ESTIMATES OF THE POWER SPECTRUM AND SPECTRAL DENSITY 
FUNCTION OBTAINED BY INSERTING SAMPLE ESTIMATES FOR AUTOCOVARIANCES 
OR AUTOCORRELATIONS ARE POOR (INCONSISTENT AND OF HIGH VARIANCE).  
THE REASON FOR THIS IS THAT THE ESTIMATES OF AUTOCOVARIANCES AND 
AUTOCORRELATIONS AT HIGH LAGS ARE BASED ON A SMALL SAMPLE SIZES, AND 
THEIR VARIANCES REMAIN HIGH EVEN AS THE TOTAL SAMPLE SIZE INCREASES. 
 
USEFUL ESTIMATES ARE OBTAINED BY WEIGHTING TO DIMINISH THE 
CONTRIBUTION TO THE ESTIMATE FROM LOWER FREQUENCIES (I.E., FROM LONG 
LAGS, FOR WHICH THE AUTOCOVARIANCE AND AUTOCORRELATION ESTIMATES 
ARE BASED ON FEW OBSERVATIONS).  A SMOOTHED ESTIMATE OF THE POWER 
SPECTRUM IS: 
 

𝑝̂(𝑓) = 2[𝑐0 + 2∑ 𝜆𝐾𝑐𝑘cos⁡(2𝜋𝑓𝑘)], 0 ≤ 𝑓 ≤
1

2
,

∞

𝑘=1
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WHERE THE λk ARE WEIGHTS CALLED A LAG WINDOW. 
 
THIS PRESENTATION PRESENTS VERY LITTLE MATERIAL ON THE TIME SERIES 
ANALYSIS IN THE FREQUENCY DOMAIN.  REFERENCES ON THIS TOPIC INCLUDE 
THE FOLLOWING: 
 

1. Jenkins, Gwilym M. and Donald G. Watts, Spectral Analysis and its 
applications, Holden-Day, 1968 

2. Priestley, M. B., Spectral Analysis and Time Series, Academic Press, 1981 
3. Harris, Bernard, ed., Spectral Analysis of Time Series, Wiley, 1967 

 
THE PARTIAL AUTOCORRELATION COEFFICIENT IS DEFINED AS THE k-th 
COEFFICIENT, Økk, OF AN AUTOREGRESSIVE REPRESENTATION OF ORDER k.  
CONSIDERED AS A FUNCTION OF k, THIS QUANTITY IS CALLED THE PARTIAL 
AUTOCORRELATION FUNCTION (PACF), UNLIKE THE ACF, THE PACF DOES NOT 
CHARACTERIZE A STOCHASTIC PROCESS.  IT IS A DIAGNOSTIC TOOL USED TO HELP 
IDENTIFY THE ORDER OF A STOCHATIC PROCESS.  FOR AN AR(p) PROCESS THE 
PACF WILL BE NONZERO FOR k <=p AND ZERO FOR k > p. 
 
FOR AN AR(p) PROCESS, THE ACF WILL DIE OFF, I.E., TEND TO DECREASE AS THE 
LAG INCREASES.  FOR A MA(q) PROCESS, THE ACF WILL CUT OFF AT THE ORDER, q, 
OF THE PROCESS.  IN CONTRAST, FOR AN AR(p) PROCESS THE PACF WILL CUT OFF 
AT THE ORDER, p, OF THE PROCESS, AND FOR AN MA(q) PROCESS THE PACF WILL 
DIE OFF.  THE ACF AND PACF ARE HENCE USEFUL TOOLS IN ASSESSING 
CANDIDATE ORDERS FOR AR AND MA MODELS.  FOR ARMA PROCESSES, THE ACF 
AND PACF WILL TEND TO DIE OFF AFTER A CERTAIN LAG. 
 

THEORETICAL MODELS: WHITE NOISE, AUTOREGRESSIVE, MOVING AVERAGE, 

ARMA, ARIMA, SEASONAL 

 
THERE ARE A NUMBER OF TYPES OF STOCHASTIC PROCESS MODELS, OR TIME 
SERIES MODELS, THAT ARE HIGHLY USEFUL FOR REPRESENTING REAL-WORLD 
PHENOMENA.  SOME OF THEM ARE STATIONARY, AND SOME ARE A PARTICULAR 
TYPE OF NONSTATIONARY, CALLED HOMOGENEOUS NONSTATIONARY.  THESE 
MODELS WILL NOW BE DESCRIBED. 
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EXAMPLES OF EACH MODEL WILL BE PRESENTED.  THE MODEL WILL BE 
REPRESENTED BY THE MODEL EQUATION, A SAMPLE TIME SERIES, THE ACF, THE 
PACF AND THE SPECTRAL DENSITY FUNCTION. 
 
IN GENERAL, A STOCHASTIC PROCESS MAY BE REPRESENTED BY THE JOINT 
PROBABILITY DISTRIBUTION FUNCTION OR THE MODEL.  SINCE A NORMAL 
PROCESS (I.E., ONE IN WHICH THE MODEL ERROR TERMS ARE NORMALLY 
DISTRIBUTED) IS CHARACTERIZED (DEFINED, COMPLETELY SPECIFIED) BY ITS 
MEAN, VARIANCES AND COVARIANCES, A NORMAL PROCESS MAY BE 
REPRESENTED BY ITS MEAN, VARIANCE AND AUTOCOVARIANCE FUNCTION (OR 
POWER SPECTRUM).  IN WHAT FOLLOWS, WE WILL ASSUME THAT THE MODEL 
RESIDUALS HAVE MEAN ZERO AND CONSTANT VARIANCE σ2.  IN THIS CASE, A 
NORMAL PROCESS IS CHARACTERIZED BY THE ACF OR SPECTRAL DENSITY 
FUNCTION (IN ADDITION TO THE VARIANCE, σ2). 
 
STATIONARY PROCESSES 
 
WHITE NOISE PROCESS 
 
A WHITE NOISE PROCESS IS A SEQUENCE OF INDEPENDENT AND IDENTICALLY 
DISTRIBUTED RANDOM VARIABLES.  IT IS USUALLY DENOTED AS A SEQUENCE a1, 
a2, …, at ,….  IT IS USUALLY ASSUMED TO HAVE MEAN ZERO.  THE VARIANCE IS 
DENOTED BY 𝜎𝑎

2. 
 
MODEL: 
 

𝑧𝑡 = 𝑎𝑡 . 
 
Figures: Sample time series, ACF, PACF, SDF. 
 
IN THE FOLLOWING, WE SHALL USE THE SYMBOL at TO DENOTE A WHITE NOISE 
PROCESS (I.E., A SEQUENCE OF UNCORRELATED RANDOM VARIABLES WITH MEAN 
ZERO AND VARIANCE σ2). 
 
MOVING AVERAGE (MA) PROCESS 
 
GENERAL MODEL: 
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𝑧𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 = (1 − 𝜃1B −⋯− 𝜃𝑞𝐵
𝑞)𝑎𝑡 = Θ(𝐵)𝑎𝑡 

 
WHERE 
 

θ(𝐵) = (1 − 𝜃1B −⋯− 𝜃𝑞𝐵
𝑞). 

 
IN ORDER FOR THIS MODEL TO REPRESENT REALISTIC PROCESSES, IT IS 
NECESSARY TO RESTRICT THE MODEL SUCH THAT THE ROOTS OF THE EQUATION 
 

θ(𝐵) = 0 
 
ARE LOCATED OUTSIDE THE UNIT CIRCLE.  THIS CONDITION IS CALLED THE 
INVERTIBILITY PROPERTY.  FOR INVERTIBLE PROCESSES, THE INFLUENCE OF PAST 
OBSERVATIONS TENDS TO DIMINISH AS THE TIME INTERVAL INCREASES. 
 
SAMPLE MODEL: 
 

𝑧𝑡 = (1 − .5𝐵)𝑎𝑡 
OR 

𝑧𝑡 = 𝑎𝑡 − .5𝑎𝑡−1. 
 
Figures: Sample time series, ACF, PACF, SDF. 
 
AUTOREGRESSIVE (AR) PROCESS 
 
GENERAL MODEL: 
 

𝑧𝑡 = 𝜙1𝑧𝑡−1 +⋯+ 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡 

 
OR 
 

𝑧𝑡 − 𝜙1𝑧𝑡−1 −⋯− 𝜙𝑝𝑧𝑡−𝑝 = 𝑎𝑡 

 
OR 
 

(𝑧𝑡 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝)𝑧𝑡 = 𝑎𝑡 
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OR 
 

ϕ(𝐵)𝑧𝑡 = 𝑎𝑡 
 
WHERE 
 

ϕ(𝐵) = (𝑧𝑡 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝). 

 
IN ORDER FOR THE PROCESS TO BE STATIONARY, IT IS NECESSARY THAT ALL 
ROOTS OF THE EQUATION 
 

ϕ(𝐵) = 0 
 
ARE LOCATED OUTSIDE THE UNIT CIRCLE. 
 
SAMPLE MODEL: 
 

(1 − .5𝐵)𝑧𝑡 = 𝑎𝑡 
 
OR 
 

𝑧𝑡 =. 5𝑧𝑡−1 + 𝑎𝑡 . 
 
Figures: Sample time series, ACF, PACF, SDF. 
 
AUTOREGRESSIVE MOVING AVERAGE (ARMA) PROCESS 
 
THE AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES MAY BE COMBINED, 
INTO WHAT IS CALLED AN AUTOREGRESSIVE – MOVING AVERAGE PROCESS. 
 
GENERAL MODEL: 
 

𝑧𝑡 = 𝜙1𝑧𝑡−1 +⋯+ 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 

 
OR 
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𝑧𝑡 − 𝜙1𝑧𝑡−1 −⋯− 𝜙𝑝𝑧𝑡−𝑝 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 

 
OR 
 

(1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝)𝑧𝑡 = (1 − 𝜃1B −⋯− 𝜃𝑞𝐵

𝑞)𝑎𝑡 

 
OR 
 

ϕ(𝐵)𝑧𝑡 = θ(𝐵)𝑎𝑡 
 
WHERE 
 

ϕ(𝐵) = (1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝) 

 
AND 
 

θ(𝐵) = (1 − 𝜃1B −⋯− 𝜃𝑞𝐵
𝑞). 

 
SAMPLE MODEL: 
 

(1 − .5𝐵)𝑧𝑡 = (1 − .2𝐵)𝑎𝑡 
 
OR 
 

𝑧𝑡 =. 5𝑧𝑡−1 + 𝑎𝑡 − .2𝑎𝑡−1. 
 
Figures: Sample time series, ACF, PACF, SDF. 
 
SEASONAL PROCESS 
 
SUPPOSE THAT OBSERVATIONS OCCURRING AT AN INTERVAL OF s TIME UNITS 
APART ARE RELATED.  FOR EXAMPLE, MONTHLY SALES OF A PRODUCT MAY 
FOLLOW AN ANNUAL PATTERN IN WHICH OBSERVATIONS 12 MONTHS APART 
ARE CORRELATED.  A USEFUL MODEL IN THIS SITUATION IS A MULTIPLICATIVE 
SEASONAL MODEL. 
 
GENERAL MODEL (MULTIPLICATIVE SEASONAL ARMA MODEL): 
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𝜙𝑝(𝐵)Φ𝑃(𝐵

𝑠)𝑧𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵
𝑠)𝑎𝑡 , 

 
WHERE THE PERIOD OF THE SEASON IS s, THE INTERVAL-s BACKSHIFT OPERATOR 
IS DEFINED BY 
 

𝐵𝑠𝑧𝑡 = 𝑧𝑡−𝑠, 
 

Φ𝑃(𝐵
𝑠) = 1 − Φ1𝐵

𝑠 −⋯−Φ𝑃𝐵
𝑃𝑠, 

 
AND 
 

Θ𝑄(𝐵
𝑠) = 1 − Θ1𝐵

𝑠 −⋯− Θ𝑄𝐵
𝑄𝑠. 

 
AS IN THE CASE OF NONSEASONAL MODELS, IT IS REQUIRED THAT THE ROOTS OF 
THE ΦP AND ΘQ POLYNOMIALS BE LOCATED OUTSIDE THE UNIT CIRCLE. 
 
SAMPLE MODEL: 
 

(1 − .6𝐵)(1 − .4𝐵12)𝑧𝑡 = (1 − .3𝐵)(1 − .2𝐵
12)𝑎𝑡 

 
OR 
 

𝑧𝑡 =. 6𝑧𝑡−1 + .4𝑧𝑡−12 − .24𝑧𝑡−13 + 𝑎𝑡 − .3𝑎𝑡−1 − .2𝑎𝑡−12 + .06𝑎𝑡−13. 
 
Figures: Sample time series, ACF, PACF, SDF. 
 

HOMOGENEOUS NONSTATIONARY PROCESS 

 
THE MODELS DESCRIBED ABOVE, IN WHICH THE ROOTS OF THE PHI 
POLYNOMIALS ARE OUTSIDE THE UNIT CIRCLE, REPRESENT STATIONARY 
PROCESSES.  IF IT IS ALLOWED FOR THE ROOTS OF THE PHI POLYNOMIALS TO BE 
ON THE UNIT CIRCLE, THE PROCESS IS NONSTATIONARY, BUT IN A PARTICULAR 
WAY.  THE LEVEL OF THE PROCESS MAY WANDER, BUT EXPLOSIVE BEHAVIOR 
DOES NOT OCCUR. 
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IF THE ROOTS OF THE PHI POLYNOMIALS ARE IMAGINARY, THE PROCESS WILL 
EXHIBIT RANDOM PERIODIC BEHAVIOR THAT APPEARS SINUSOIDAL IN NATURE.  
IF THE ROOTS ARE REAL, THE PROCESS LEVEL WANDERS.  PERIODIC BEHAVIOR 
MAY BE PRESENT, BUT IT IS NOT SINUSOIDAL IN NATURE. 
 
THE TYPE OF NONSTATIONARY BEHAVIOR EXHIBITED BY SERIES HAVING ROOTS 
ON THE UNIT CIRCLE IS CALLED HOMOGENEOUS NONSTATIONARY BEHAVIOR.  
THE MOST WIDELY USED MODELS OF THIS SORT ARE ONES IN WHICH THE PHI 
POLYNOMIAL HAS FACTORS OF THE FORM ∇ = (1 – B) OR ∇𝑠 = (1 – Bs) (THAT IS, 
THE ROOTS ARE REAL).  THESE MODELS HAVE THE FORM 
 

𝜙𝑝(𝐵)Φ𝑃(𝐵
𝑠)∇𝑑∇𝐷𝑧𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵

𝑠)𝑎𝑡. 

 
IN MOST APPLICATIONS, THERE ARE ONLY ONE OR TWO PHI PARAMETERS IN 
EACH PHI POLYNOMIAL, ONE OR TWO THETA PARAMETERS IN EACH THETA 
PARAMETER, AND THE VALUES OF d AND D ARE USUALLY ZERO OR ONE. 
 
NOTATION: THE PRECEDING MODEL IS REFERRED TO AS A BOX-JENKINS MODEL 
WITH PARAMETERS (p,d,q) x (P,D,Q)s (OR OF ORDER (p,d,q) x (P,D,Q)s).  SOME 
AUTHORS USE THE SYMBOL Δ TO DENOTE THE FIRST DIFFERENCE (1 – B) INSTEAD 
OF ∇.  IN ECONOMETRICS, IT IS STANDARD PRACTICE TO USE L TO DENOTE THE 
BACKSHIFT OPERATOR (INSTEAD OF B). 
 
A MODEL HAVING THE DIFFERENCE TERMS (∇ TERMS) IS CALLED AN INTEGRATED 
PROCESS.  A MODEL HAVING AN AUTOREGRESSIVE (PHI) POLYNOMIAL, 
DIFFERENCE TERMS, AND A MOVING AVERAGE (THETA) POLYNOMIAL IS CALLED 
AN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) PROCESS. 
 
EXAMPLE: 
 

(1 − 𝐵)𝑧𝑡 = (1 − .7𝐵)𝑎𝑡 
 
OR 
 

𝑧𝑡 = 𝑧𝑡−1 + 𝑎𝑡 − .7𝑎𝑡−1. 
 
Figures: Sample time series. 
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EXAMPLE: 
 

(1 − 𝐵)2𝑧𝑡 = (1 − 1.1𝐵 + .2𝐵
2)𝑎𝑡 

 
OR 
 

𝑧𝑡 = 2𝑧𝑡−1 − 𝑧𝑡−2 + 𝑎𝑡 − 1.1𝑎𝑡−1 + .2𝑎𝑡−2. 
 
Figures: Sample time series. 
 
EXAMPLE: 
 

(1 − 𝐵)2(1 − 𝐵12)𝑧𝑡 = (1 − .7𝐵)(1 − .4𝐵
12)𝑎𝑡 

 
OR 
 

𝑧𝑡 = 2𝑧𝑡−1 − 𝑧𝑡−2 + 𝑎𝑡 − 1.1𝑎𝑡−1 + .28𝑎𝑡−2. 
 
Figures: Sample time series. 
 
ALTHOUGH DIFFERENCING IS A WIDELY USED METHOD FOR TRANSFORMING TO 
ACHIEVE STATIONARITY, IT IS APPROPRIATE ONLY IF THE UNDERLYING 
STOCHASTIC PROCESS IS REASONABLY REPRESENTED BY AN ARIMA MODEL 
HAVING A REAL UNIT ROOT.  FOR A SERIES THAT FLUCTUATES AROUND A 
DETERMINISTIC TREND, APPLYING THIS TRANSFORMATION TO ACHIEVE 
STATIONARITY WOULD BE A MISTAKE.  DIFFERENCING WOULD IN FACT REMOVE 
THE TREND, BUT IT WOULD BE AN INCORRECT SPECIFICATION, AND WOULD IN 
FACT INTRODUCE A UNIT ROOT INTO THE TRANSFORMED DATA.  A FORECASTING 
MODEL BASED ON THIS MODEL WOULD PRODUCE REASONABLE LEAD-ONE 
FORECASTS, BUT THE FORECASTS BEYOND THAT POINT WOULD HAVE MUCH 
LARGER ERROR VARIANCES THAN FORECASTS BASED ON THE CORRECT MODEL. 
 
Figure: Deterministic trend plus white noise series. 
 

IMPULSE RESPONSE FUNCTION (IRF) 

 



19 
 

AS MENTIONED, FOR A (WEAKLY) STATIONARY PROCESS, THE ROOTS OF THE PHI 
AND THETA POLNOMIALS ARE OUTSIDE THE UNIT CIRCLE.  IN THIS CASE, THE 
LINEAR OPERATOR 𝜙(B) MAY BE INVERTED, AND THE ARMA MODEL 
 

𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 
 
MAY BE WRITTEN AS 
 

𝑧𝑡 = 𝜙
−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡 

 
WHERE 
 

𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵) = 1 − 𝜓1𝐵 − 𝜓2𝐵
2 −⋯. 

 
THIS REPRESENTATION IS CALLED A WOLD DECOMPOSITION, AND THE SERIES Ψ1, 
Ψ2,… IS  CALLED THE IMPULSE RESPONSE FUNCTION (IRF).  THE Ψ SERIES IS FINITE 
FOR A PURE MOVING AVERAGE PROCESS, AND INFINITE FOR AN 
AUTOREGRESSIVE MODEL (EITHER AR OR ARMA). 
 
THE FUNCTION Ψk SHOWS THE AVERAGE EFFECT OF A UNIT INCREASE IN THE 
MODEL INPUT at, ON THE MODEL OUTPUT, zt+k.  NOTE THAT THE IMPULSE 
RESPONSE FUNCTION REPRESENTS THE EFFECT OF A UNIT CHANGE IN THE INPUT 
(at) WITH THE PROCESS FUNCTIONING AS SPECIFIED BY A CAUSAL MODEL OF THE 
STOCHASTIC PROCESS UNDERLYING THE MODEL.  IT REPRESENTS THE EFFECT OF 
AN OBSERVED UNIT CHANGE IN THE INPUT IF THE MODEL ERROR TERMS OF 
UNDERLYING PROCESS REPRESENT OBSERVED CHANGES; IT REPRESENTS AN 
ESTIMATE OF THE EFFECT OF A FORCED CHANGE IN THE INPUT IF THE MODEL 
ERROR TERMS OF THE UNDERLYING MODEL REPRESENT FORCED CHANGES. 
 
WHILE THE IMPULSE RESPONSE FUNCTION CHARACTERIZES A TIME SERIES, IT IS 
NOT USED A LOT IN ANALYSIS OF UNIVARIATE TIME SERIES MODELS THAT 
INCLUDE NO EXPLANATORY VARIABLES, IN WHICH CASE IT INDICATES THE 
RESPONSE TO CHANGES IN THE MODEL ERROR TERMS.  IT IS USED MORE IN 
ANALYSIS OF MODELS CONTAINING EXPLANATORY VARIABLES, TO SHOW THE 
RESPONSE (OF AN OUTPUT VARIABLE) TO CHANGES IN THEM. 
 
THE SUM OF ALL OF THE IMPULSE RESPONSES, WHICH IS THE TOTAL EFFECT OF A 
UNIT INCREASE ON ALL FUTURE OUTPUTS, 



20 
 

 

∑ 𝜓𝑖
∞

𝑖=0
 

 
IS CALLED THE TOTAL MULTIPLIERS OR LONG-RUN EFFECTS.  THE SUM OF THE 
IMPULSE RESPONSES UP TO A VALUE n 
 

∑ 𝜓𝑖
𝑛

𝑖=0
 

 
 IS CALLED THE ACCUMULATED RESPONSE OVER n PERIODS, OR THE n-th INTERIM 
MULTIPLIERS. 
 
ANALYSIS OF THE IMPULSE RESPONSE FUNCTION IS REFERRED TO AS MULTIPLIER 
ANALYSIS IN ECONOMICS. 
 
THE PRECEDING DISCUSSION CONSIDERS THE IMPULSE RESPONSE FUNCTION FOR 
A STATIONARY PROCESS.  THE DEFINITION OF THE IMPULSE RESPONSE FUNCTION 
IS THE SAME FOR HOMOGENEOUS NONSTATIONARY PROCESSES, BUT THE 
PROCESS CANNOT BE REPRESENTED AS A CONVERGENT SERIES, AS SHOWN 
ABOVE.  FORMULAS FOR THE IMPULSE RESPONSE FUNCTION (I.E., THE Ψ’s) IN 
THE HOMOGENEOUS NONSTATIONARY CASE WILL BE PRESENTED LATER. 
 

STATIONARITY TRANSFORMATIONS, TESTS OF HYPOTHESES 

 
THE PRECEDING MODELS – THE CLASS OF AUTOREGRESSIVE INTEGRATED 
MOVING AVERAGE MODELS – CAN REPRESENT A WIDE RANGE OF PHENOMENA, 
AND THE MODELS MAY BE EITHER STATIONARY OR NONSTATIONARY.  IN ORDER 
TO USE ONE OF THESE MODELS IN A PARTICULAR APPLICATION, IT MUST BE 
DEMONSTRATED THAT THE OBSERVED TIME SERIES CAN REASONABLY BE 
REPRESENTED BY A MEMBER OF THIS CLASS. 
 
AN ARIMA MODEL IS APPROPRATE IF THE OBSERVED DATA SERIES CAN BE 
DEMONSTRATED TO BE STATIONARY, OR IF IT CAN BE CONVERTED TO A 
STATIONARY TIME SERIES BY DIFFERENCING (OR, MORE GENERALLY, BY 
TRANSFORMING USING ANY POLYNOMIAL FILTER FOR WHICH THE ROOTS ARE 
ON THE UNIT CIRCLE). 
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A STANDARD PROCEDURE FOR TRANSFORMING A NONSTATIONARY STOCHASTIC 
PROCESS TO A STATIONARY ONE IS DIFFERENCING.  DIFFERENCING IS 
APPROPRIATE IF THE OBSERVED SERIES EXHIBITS HOMOGENEOUS 
NONSTATIONARY BEHAVIOR OR SEASONALITY.  SUCH BEHAVIOR IS EASILY 
RECOGNIZED BY VISUAL INSPECTION. 
 
A STATISTICAL TEST OF THE HYPOTHESIS THAT A PROCESS IS NONSTATIONARY VS. 
THE ALTERNATIVE THAT IT IS STATIONARY IS THE DICKEY-FULLER TEST.  (SEE 
ECONOMETRIC ANALYSIS 7th ED. BY WILLIAM H. GREENE (PEARSON EDUCATION / 
PRENTICE HALL, 2012) FOR DISCUSSION.)  THE DICKEY-FULLER TEST IS A LITTLE 
COMPLICATED, SINCE THE SAMPLING DISTRIBUTION OF THE TEST STATISTIC 
DEPENDS ON THE NATURE OF THE NONSTATIONARITY (I.E., ON THE TRUE 
PROCESS).  THERE IS NOT JUST ONE DICKEY-FULLER TEST, BUT A NUMBER OF 
THEM, FOR DIFFERENT SITUATIONS (E.G., AN APPARENT RANDOM WALK, OR A 
RANDOM WALK WITH DRIFT, OR A RANDOM WALK WITH TREND).  (THE 
SAMPLING DISTRIBUTION IS NOT AVAILABLE IN CLOSED FORM, EVEN FOR SIMPLE 
HOMOGENEOUS NONSTATIONARY PROCESSES SUCH AS RANDOM WALKS.)  FOR 
SHORT TIME SERIES, THE TESTS ARE NOT RELIABLE. 
 
A STATISTICAL TEST OF THE HYPOTHESIS OF NONSTATIONARITY (OR 
STATIONARITY) IS CALLED A “UNIT ROOT” TEST, SINCE IT IS A TEST OF WHETHER 
THE AUTOREGRESSIVE POLYNOMIAL OF AN AUTOREGRESSIVE PROCESS HAS A 
ROOT ON (OR OUTSIDE) THE UNIT CIRCLE. 
 
IN ECONOMETRIC APPLICATIONS, MUCH ATTENTION HAS BEEN FOCUSED ON 
WHETHER DIFFERENCING IS REQUIRED TO ACHIEVE STATIONARITY, VS. THE USE 
OF A MODEL THAT HAS A ROOT OF THE AUTOREGRESSIVE POLYNOMIAL JUST 
OUTSIDE THE UNIT CIRCLE, E.G., (1 – B) VS. (1 - .95B).  IT SHOULD BE NOTED THAT 
THE BOX-JENKINS (ARIMA) MODELS ARE USED PRIMARILY IN SHORT-TERM 
FORECASTING, AND WHICH OF THESE REPRESENTATIONS IS SELECTED WILL MAKE 
LITTLE DIFFERENCE IN THE ACCURACY OF SHORT-TERM FORECASTS.  THE LONG-
TERM BEHAVIOR OF THESE MODEL ALTERNATIVES IS SUBSTANTIALLY DIFFERENT, 
HOWEVER, SINCE THE EFFECT OF A SHOCK AT A PARTICULAR TIME DIES OUT 
WITH THE LATTER MODEL (1 - .95B) BUT NOT THE FORMER MODEL (1 – B).  FOR 
SHORT TIME SERIES, THE POWER OF THE DICKEY-FULLER TEST TO DISCRIMINATE 
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BETWEEN THESE TWO MODEL CHOICES WILL BE LOW.  TO CREDIBLY MAKE SUCH 
AN ASSESSMENT WOULD REQUIRE A QUITE LONG TIME SERIES. 
 
IN PRACTICE, ONLY ONE OR TWO DIFFERENCES IS NECESSARY TO ACHIEVE 
STATIONARITY FOR A NONSTATIONARY SERIES.  FOR SEASONAL SERIES, IT IS 
USUAL TO SEE A DIFFERENCE OF INTERVAL ONE AND INTERVAL s, WHERE s 
DENOTES THE NUMBER OF TIME INTERVALS BETWEEN RECURRING SEASONS. 
 

MODEL SPECIFICATION; ESTIMATION OF PARAMETERS (METHOD OF 

MOMENTS, LEAST-SQUARES, MAXIMUM LIKELIHOOD, BAYESIAN); NONLINEAR 

ESTIMATION 

 
AFTER IT HAS BEEN ESTABLISHED THAT THE DATA GENERATING PROCESS IS 
STATIONARY, OR DIFFERENCING HAS BEEN APPLIED TO TRANSFORM THE 
PROCESS TO A STATIONARY ONE, WORK MAY PROCEED ON MODEL 
SPECIFICATION AND ESTIMATION OF MODEL PARAMETERS. 
 
THE FIRST STEP IS TO ESTIMATE VALUES OF THE STRUCTURAL PARAMETERS, p, d, 
q, s, P, D, Q.  THIS IS DONE BY EXAMINING THE AUTOCORRELATION FUNCTION 
AND PARTIAL AUTOCORRELATION FUNCTION.  THE VALUES FOR s, d AND d WILL 
HAVE BEEN DETERMINED DURING THE COURSE OF DECIDING WHETHER AND 
HOW DIFFERENCING SHOULD BE APPLIED TO TRANSFORM A NONSTATIONARY 
SERIES TO A STATIONARY ONE.  WHAT REMAINS IS TO DETERMINE REASONABLE 
VALUES FOR p, q, P AND Q. 
 
AS EXHIBITED IN THE FIGURES PRESENTED EARLIER, THE AUTOCORRELATION 
FUNCTION CUTS OFF FOR A PURE MOVING AVERAGE PROCESS, AND TAILS OFF 
FOR A PURE AUTOREGRESSIVE PROCESS.  THE PARTIAL AUTOCORRELATION 
FUNCTION CUTS OFF FOR A PURE AUTOREGRESSIVE PROCESS AND TAILS OFF FOR 
A PURE MOVING AVERAGE PROCESS.  FOR MIXED PROCESSES, THE BEHAVIOR IS 
MORE COMPLICATED.  REFERENCE BJRL PRESENTS TABLES THAT MAY BE USED AS 
GUIDES TO INFER TENTATIVE VALUES FOR p, q, P AND Q (FOR ARBITRARY s). 
 
NOTE THAT THE MODELS DESCRIBED HERE ARE NOT THE FULL RANGE OF MODELS 
THAT MAY BE CONSIDERED.  SOME MODELS MAY CONTAIN MEANS AND TIME 
TRENDS.  (A MEAN MAY BE REMOVED BY SINGLE DIFFERENCING, AND A TREND 
BY DOUBLE DIFFERENCING, BUT SUCH TRANSFORMATIONS ARE NOT 
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RECOMMENDED FOR SERIES HAVING A CONSTANT MEAN OR LINEAR TREND, 
SINCE DIFFERENCING IN THIS CASE WILL INTRODUCE A UNIT ROOT INTO THE 
MODEL ERROR TERM, CAUSING THE MODEL TO BE NON-INVERTIBLE.) 
 
FOR A SPECIFIED MODEL STRUCTURE (VALUES OF p, d, q, s, P, D, Q), THE MODEL 
PARAMETERS (PHIs AND THETAs) MAY BE ESTIMATED IN A NUMBER OF WAYS.  
THE STANDARD ESTIMATION PROCEDURES ARE THE FOLLOWING.  NOTE THAT 
PRIOR TO ESTIMATION, ADDITIONAL TRANSFORMATIONS MAY BE APPLIED TO 
THE DATA (E.G., A LOGARITHMIC TRANSFORMATION, IF THE STANDARD 
DEVIATION OF THE OBSERVATIONS APPEARS TO VARY ACCORDING TO THE LEVEL 
OF THE SERIES, IN ORDER TO ACHIEVE A CONSTANT VARIANCE FOR THE MODEL 
RESIDUALS). 
 
METHOD OF MOMENTS 
 
FROM THE AVAILABLE SAMPLE DATA (TRANSFORMED TO STATIONARY), THE 
FIRST AND SECOND-ORDER SAMPLE MOMENTS (MEANS, VARIANCE, 
COVARIANCES) ARE CALCULATED.  FOR AN ASSUMED MODEL STRUCTURE 
(VALUES OF p,q,s,P,Q), THE CORRESPONDING POPULATION MOMENTS ARE 
DETERMINED, ASSUMING AN UNDERLYING PROBABILITY DISTRIBUTION FOR THE 
MODEL ERROR TERM (SUCH AS NORMALITY).  THE POPULATION MOMENTS ARE 
FUNCTIONS OF THE MODEL PARAMETERS (PHIs AND THETAs).  THE POPULATION 
VALUES OF THE MOMENTS ARE SET EQUAL TO THE SAMPLE VALUES, AND THE 
EQUATIONS SOLVED FOR THE MODEL PARAMETERS. 
 
METHOD OF LEAST SQUARES 
 
THE PARAMETER ESTIMATES ARE THE VALUES THAT MINIMIZE THE RESIDUAL 
SUM OF SQUARES.  THE COMPUTATIONAL PROCEDURES FOR MINIMIZING THE 
RESIDUAL SUM OF SQUARES IS SOMEWHAT COMPLICATED.  IT IS DESCRIBED IN 
DETAIL IN THE TIMES TECHNICAL MANUAL AND IN THE BJRL BOOK. 
 
THE METHOD OF LEAST SQUARES IS VERY BASIC, IN THAT IT IS A PROCEDURE 
THAT MAY BE IMPLEMENTED WITHOUT ANY CONSIDERATION OF AN 
UNDERLYING PROBABILITY DISTRIBUTION. 
 



24 
 

TO IMPLEMENT THE LEAST-SQUARES METHOD FOR A MODEL THAT INCLUDES 
MOVING-AVERAGE TERMS, VALUES MUST BE SPECIFIED FOR THE q MODEL 
ERROR TERMS PRECEDING THE START OF THE SAMPLE SERIES.  THERE ARE TWO 
APPROACHES TO THE LEAST-SQUARES METHOD, CORRESPONDING TO HOW THIS 
IS DONE.  FOR CONDITIONAL LEAST-SQUARES ESTIMATES, THE INITIAL VALUES OF 
THE MODEL ERROR TERMS ARE ASSUMED TO BE EQUAL TO ZERO.  FOR 
UNCONDITIONAL LEAST-SQUARES ESTIMATES, THE INITIAL VALUES ARE 
ESTIMATED AS MODEL PARAMETERS.  THE CONDITIONAL APPROACH IS USED 
BECAUSE IT IS SIMPLER TO IMPLEMENT (E.G., CLOSED-FORM SOLUTIONS MAY BE 
AVAILABLE FOR THE CONDITIONAL METHOD).  FOR A LONG SAMPLE TIME SERIES, 
THE TWO METHODS PRODUCE SIMILAR RESULTS.  THE DIFFERENCE IN THE 
METHODS IS MOST PRONOUNCED FOR MOVING-AVERAGE PARAMETER VALUES 
NEAR THE UNIT CIRCLE (WHERE THE EFFECT OF MODEL ERROR TERMS PERSISTS 
FOR A LONGER TIME, SO THAT THE EFFECT OF THE ASSUMED VALUES OF ZERO 
PERSISTS FOR A LONGER TIME). 
 
MAXIMUM LIKELIHOOD 
 
THE PARAMETER VALUES ARE THOSE THAT MAXIMIZE THE LIKELIHOOD, 
ASSUMING A NORMAL DISTRIBUTION (OR OTHER SUITABLE DISTRIBUTION) FOR 
THE MODEL ERROR TERMS. 
 
THE ESTIMATES PRODUCED BY THE METHOD OF LEAST SQUARES PRODUCES THE 
SAME ESTIMATES AS THE METHOD OF MAXIMUM LIKELIHOOD FOR A NORMAL 
DISTRIBUTION. 
 
AS IN THE CASE OF LEAST-SQUARES ESTIMATION, THE PARAMETER ESTIMATION 
MAY BE IMPLEMENTED CONDITIONAL ON SPECIFIED VALUES (ZEROS) FOR THE 
INITIAL VALUES OF THE MODEL ERROR TERMS, OR UNCONDITIONALLY. 
 
BAYESIAN ESTIMATES 
 
A PRIOR DISTRIBUTION IS SPECIFIED FOR THE MODEL PARAMETERS, AND A 
SAMPLING DISTRIBUTION GIVEN THE MODEL PARAMETERS.  THE POSTERIOR 
DISTRIBUTION OF THE MODEL PARAMETERS IS DETERMINED, GIVEN THE 
OBSERVED SAMPLE (OF STATIONARY-TRANSFORMED DATA).  THE PARAMETER 
ESTIMATES ARE THEIR EXPECTED VALUES, GIVEN THE POSTERIOR DISTRIBUTION. 
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THIS PRESENTATION WILL NOT DESCRIBE BAYESIAN ESTIMATION.  REFERENCES 
ON THIS TOPIC INCLUDE: 
 

GELMAN, ANDREW, JOHN B. CARLIN, HAL S. STERN, DAVID B. DUNSON, AKI 
VEHTARI AND DONALD B. RUBIN, BAYESIAN DATA ANAYSIS, 3RD ED., CRC 
PRESS, 2014 
 
ROSSI, PETER E., GREG M. ALLENBY AND ROBERT MCCOLLUCH, BAYESIAN 
STATISTICS AND MARKETING, WILEY, 2005 
 
BOX, GEORGE E. P. AND GEORGE C. TIAO, BAYESIAN INFERENCE IN 
STATISTICAL ANALYSIS, WILEY, 1973 
 
CARLIN, BRADLEY P. AND THOMAS A. LOUIS, BAYES AND EMPIRICAL BAYES 
METHODS FOR DATA ANALYSIS, 2ND ED., CHAPMAN & HALL / CRC, 2000 

 
LINEAR STATISTICAL MODELS VS. NONLINEAR STATISTICAL MODELS 
 
IMPLEMENTATION OF THE PRECEDING METHODS OF ESTIMATION IS SOMEWHAT 
COMPLICATED, AND NUMERICAL METHODS ARE REQUIRED TO IMPLEMENT 
THEM IN MANY CASES.  FOR PURE AUTOREGRESSIVE MODELS, THE MODELS ARE 
LINEAR STATISTICAL MODELS, AND THE ESTIMATION MAY PROCEED IN THE 
USUAL FASHION.  FOR MODELS INVOLVING MOVING AVERAGE TERMS, THE 
MODELS ARE NOT LINEAR IN THE PARAMETERS, AND NUMERICAL METHODS 
MUST BE USED TO DETERMINE THE ESTIMATES. 
 
FOR MODELS INVOLVING A SMALL NUMBER OF PARAMETERS (E.G., AN ARMA 
MODEL HAVING p + q < 2) THE SIMPLEST APPROACH TO PARAMETER ESTIMATION 
IS TO ESTIMATE THE LIKELIHOOD SURFACE FOR A RANGE (GRID) OF VALUES OF p 
AND q, AND SELECT THE VALUES CORRESPONDING TO THE MAXIMUM VALUE OF 
THE LIKELIHOOD SURFACE.  THIS APPROACH IS NOT PRACTICAL FOR SITUATIONS 
INVOVLING A LARGE NUMBER OF PARAMETERS (SUCH AS MANY MULTIVARIATE 
APPLICATIONS). 
 

TESTS OF MODEL ADEQUACY 
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THE PRIMARY GOAL IS TO OBTAIN A MODEL REPRESENTATION THAT REPRESENTS 
THE BASIC STOCHASTIC NATURE OF AN OBSERVED PROCESS WELL, IN AN 
EFFICIENT MANNER, I.E., WITH AS SMALL A NUMBER OF PARAMETERS AS IS 
REASONABLY POSSIBLE. 
 
TESTS MAY BE APPLIED TO DETERMINE WHETHER φs AND θs AT SPECIFIED LAGS 
SHOULD BE RETAINED IN A PRELIMINARY MODEL.  THE USUAL PROCEDURE IS TO 
TEST THE SIGNIFICANCE OF PARAMETERS FOR HIGHER LAGS FIRST. 
 
A VERY IMPORTANT ASSUMPTION OF THE BOX-JENKINS MODELS IS THE 
ASSUMPTION THAT THE MODEL RESIDUALS (at’s) ARE UNCORRELATED, I.E., FORM 
A WHITE NOISE SEQUENCE.  THE VALIDITY OF THIS ASSUMPTION MAY BE TESTED 
FROM THE AVAILABLE DATA. TESTS OF WHITENESS MAY INVOLVE EITHER THE 
AUTOCORRELATON FUNCTION OR THE SPECTRAL DENSITY FUNCTION.  TESTS OF 
THIS ASSUMPTION INCLUDE THE GRENANDER-ROSENBLATT TEST, THE 
KOLMOGOROV-SMIRNOV TEST WITH THE LIILLIFORS CORRECTION, THE DURBIN-
WATSON TEST, AND THE LJUNG-BOX TEST.  FOR AN APPROPRIATE MODEL, THE 
MODEL RESIDUALS SHOULD APPEAR TO BE A WHITE NOISE PROCESS. 
 
FOR LARGE n (THE SAMPLE SIZE, AFTER DIFFERENCING TO ACHIEVE 
STATIONARITY) THE ESTIMATED AUTOCORRELATIONS OF A WHITE NOISE 
SEQUENCE ARE APPROXIMATELY UNCORRELATED AND NORMALLY DISTRIBUTED, 
WITH MEAN ZERO AND VARIANCE 1/n.  IF, FOR A FITTED MODEL, AN ESTIMATED 

AUTOCORRELATION EXCEEDS 1.96/√𝑛 IN MAGNITUDE, THIS MAY BE VIEWED AS 
EVIDENCE THAT THE MODEL RESIDUALS ARE NOT WHITE.  UNFORTUNATELY, THE 
FACT THAT AN ESTIMATED AUTOCORRELATION DOES NOT EXCEED THIS LEVEL 
MAY NOT BE VIEWED AS EVIDENCE THAT THE AUTOCORRELATION IS ZERO.  THE 
REASON FOR THIS IS THAT IF THE MODEL RESIDUALS ARE NOT WHITE, THEN THE 
VARIANCE OF THE ESTIMATED AUTOCORRELATIONS MAY BE VERY MUCH 
SMALLER THAN 1/n.  FOR EXAMPLE, IN AN AUTOREGRESSIVE MODEL WITH A 
SINGLE PARAMETER φ, THE VARIANCE OF THE LAG-ONE AUTOCORRELATION IS 
φ2/n.  SO, IF φ IS AT ALL APPRECIABLE IN MAGNITUDE, THE VARIANCE OF THE 
LAG-ONE AUTOCORRELATION IS SUBSTANTIALLY LESS THAN 1/n.  IF THE VALUE 

1.96/√𝑛 WERE USED TO DECIDE WHETHER THE LAG-ONE AUTOCORRELATION 
WERE DIFFERENT FROM ZERO, THERE COULD (DEPENDING ON THE VALUE OF φ) 
BE A LARGE CHANGE OF WRONGLY DECIDING THAT THE TRUE LAG-ONE 
AUTOCORRELATION WAS ZERO, WHEN IT WAS NOT. 
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AN APPROXIMATE PORTMANTEAU TEST OF A FITTED ARIMA(p,d,q) MODEL WAS 
PROPOSED BY BOX AND PIERCE.  IF THE FITTED MODEL IS APPROPRIATE, THEN 
THE STATISTIC 
 

𝑄 = 𝑛∑ 𝑟𝑘
2(𝑎̂)

𝐾

𝑘=1
 

 

IS APPROXIMATELY DISTRIBUTED AS χ2(K-p-q), WHERE 𝑟𝑘
2(𝑎̂) DENOTES THE k-th 

ESTIMATED AUTOCORRELATION AND n = N -d IS THE NUMBER OF OBSERVATIONS 
REMAINING AFTER DIFFERENCING TO ACHIEVE STATIONARITY. 
 
IN PRACTICE, IT WAS OBSERVED THAT FOR SAMPLES OF THE SIZE OFTEN 
ENCOUNTERED IN PRACTICE, THE VALUE OF THE Q STATISTIC TENDS TO BE 
SMALLER THAN χ2(K-p-q).   LJUNG AND BOX PROPOSED A MODIFIED FORM OF 
THE TEST STATISTIC, 
 

𝑄̃ = 𝑛(𝑛 + 2)∑ (𝑛 − 𝑘)−1𝑟𝑘
2(𝑎̂)

𝐾

𝑘=1
. 

 
THIS STATISTIC HAS THE MEAN K – p -q OF THE χ2(K-p-q) DISTRIBUTION.  IT IS A 
MORE SATISFACTORY STATISTIC BECAUSE THE VARIANCE OF rk(a) FOR A WHITE 
NOISE SERIES IS CLOSER TO (n – k))/(n(n + 2)) THE VALUE 1/n ASSUMED FOR THE 
BOX-PIERCE TEST. 
 
THE STANDARD TEST FOR WHITENESS, THEN, IS THE LJUNG-BOX TEST, WHICH 
TESTS WHETHER THE FIRST K AUTOCORRELATIONS OF THE ERRORS FOR A FITTED 
MODEL ARE ZERO.  SUPPOSE THAT THE FITTED MODEL IS ARIMA(p,d,q).  THE 
VALUE OF K IS CHOSEN SO THAT THE WEIGHTS 𝜓𝑗  OF THE MODEL, WRITTEN IN 

THE FORM 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵) ARE SMALL AFTER LAG j = K.  LET N DENOTE 
THE TOTAL NUMBER OF OBSERVATIONS AND n = N – d DENOTE THE NUMBER OF 
OBSERVATIONS AFTER DIFFERENCING d TIMES TO ACHIEVE STATIONARITY.  
DENOTE THE ESTIMATED MODEL RESIDUALS AS 𝑎̂𝑡 AND DENOTE THE ESTIMATED 
AUTOCORRELATION OF THE SEQUENCE OF ESTIMATED MODEL RESIDUALS AS 
𝑟𝑘(𝑎̂).  THE TEST STATISTISTIC IS 
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𝑄̃ = 𝑛(𝑛 + 2)∑ (𝑛 − 𝑘)−1𝑟𝑘
2(𝑎̂).

𝐾

𝑘=1
 

 
THIS TEST STATISTIC IS APPROXIMATELY DISTRIBUTED AS A χ2(K-p-q) VARIATE. 
  
IF THE AVAILABLE DATA ARE LIMITED, TESTS OF MODEL ADEQUACY ARE 
PERFORMED USING ALL OF THE AVAILABLE DATA.  IF SUFFICIENT DATA ARE 
AVAILABLE, A PREFERRED PROCEDURE IS TO ESTIMATE THE MODEL FROM ONE 
DATA SET AND ASSESS MODEL PERFORMANCE FROM A SEPARATE DATA SET. 
 

MEASURES OF MODEL EFFICIENCY (INFORMATION CRITERIA): AIC, BIC, HQC 

 
IN SPECIFYING A MODEL, A BETTER FIT (LOWER VARIANCE OF THE RESIDUALS) 
MAY BE ACHIEVED WITH MORE PARAMETERS, BUT THE MODEL MAY IN FACT 
EXHIBIT LOWER PERFORMANCE FOR PREDICTION (FORECASTING) OR CONTROL 
THAN A MODEL HAVING FEWER PARAMETERS.  THAT IS, THERE IS A TRADE-OFF 
BETWEEN MODEL PRECISION (GOODNESS OF FIT) AND MODEL COMPLEXITY. 
 
THREE STANDARD PROCEDURES ARE AVAILABLE FOR ASSISTING THE CHOICE OF A 
MODEL (FROM A SELECTION OF ALTERNATIVE MODELS THAT PASS TESTS OF 
MODEL ADEQUACY).  THESE PROCEDURES FORM A MEASURE THAT INCLUDES A 
TERM REPRESENTING THE MAXIMIZED LIKELIHOOD AND A TERM REPRESENTING 
MODEL COMPLEXITY. 
 
AKAIKE INFORMATION CRITERION (AIC) 
 

𝐴𝐼𝐶 =
−2 log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑟

𝑛
 

 
WHERE r DENOTES THE NUMBER OF MODEL PARAMETERS (E.G., r = p + q FOR A 
NONSEASONAL ARMA MODEL WITHOUT A MEAN, OR r = p + q + 1 FOR A 
NONSEASONAL MODEL WITH A MEAN). 
 
BAYESIAN (SCHWARZ) INFORMATION CRITERION (BIC) 
 

𝐵𝐼𝐶 = ⁡
−2 log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝑟⁡log⁡(𝑛)

𝑛
⁡. 
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HANNAN-QUINN CRITERION (HQC) 
 

𝐻𝑄𝐶 =
−2 log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑟⁡log⁡(log(𝑛))

𝑛
. 

 
IF THE TRUE PROCESS IS AN ARMA(p,q) PROCESS, IT CAN BE SHOWN THAT THE  
BIC AND HQC ARE CONSISTENT IN THE SENSE THAT AS THE SAMPLE SIZE 
BECOMES VERY LARGE, THEY SELECT THE CORRECT MODEL (VALUES OF p AND q).  
THE AIC MAY SELECT A MODEL THAT IS SLIGHTLY MORE COMPLEX.  IF THE TRUE 
PROCESS IS NOT A FINITE-ORDER ARMA PROCESS, THEN THE AIC HAS THE 
PROPERTY THAT AS THE SAMPLE SIZE BECOMES LARGE IT WILL SELECT, FROM A 
SET OF ARMA MODELS, THE ONE THAT IS CLOSEST TO THE TRUE PROCESS 
(WHERE CLOSENESS IS MEASURED BY THE KULLBACK-LEIBLER DIVERGENCE, A 
MEASURE OF DISPARITY BETWEEN MODELS). 
 
IN THE PRECEDING FORMULAS FOR THE INFORMATION CRITERIA, THE FIRST 
TERM, 
 

−2 log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)

𝑛
 

 
MAY BE APPROXIMATED BY 
 

log(𝜎̂𝑎
2), 

 
THE NATURAL LOGARITHM OF THE ESTIMATED VARIANCE OF THE RESIDUALS OF 
THE FITTED MODEL. 
 
A DRAWBACK OF THE INFORMATION CRITERIA IS THAT THEIR USE REQUIRES THE 
FITTING OF A POTENTIALLY LARGE NUMBER OF ALTERNATIVE ARMA(p,q) 
MODELS, FOR ALTERNATIVE VALUES OF p AND q.  HANNAN AND RISSANEN 
DEVELOPED A METHOD FOR AVOIDING THIS PROBLEM.  THEIR APPROACH IS AS 
FOLLOWS.  FIRST, ESTIMATE AN AR MODEL OF HIGH ORDER, AND USE THE 
RESIDUALS OF THIS MODEL AS APPROXIMATIONS FOR THE RESIDUALS OF THE 
CORRECT MODEL.  THEN, REGRESS THE OBSERVED VALUE zt ON p PREVIOUS 
OBSERVATIONS AND q APPROXIMATE RESIDUALS, FOR VARIOUS VALUES OF p 
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AND q.  DENOTE THE ESTIMATED ERROR VARIANCE OF EACH OF THESE MODELS 
BY 𝜎̂𝑝,𝑞

2 .⁡⁡THEN, USING THE BIC, SELECT THE VALUES OF p AND q THAT MINIMIZE 

 

log(𝜎̂𝑝,𝑞
2 ) + (𝑝 + 𝑞) log(𝑛) /𝑛 

  
I.E., THE BIC.  (FITTING THESE MODELS IS EASIER THAN FITTING ARMA(p,q) 
MODELS BECAUSE THEY ARE LINEAR STATISTICAL MODELS (REGRESSION 
MODELS), NOT NONLINEAR MODELS (AS ARE ARMA MODELS).)  HANNAN AND 
RISSANEN SHOW THAT THE ESTIMATORS OF p AND q DETERMINED BY THIS 
METHOD CONVERGE ALMOST SURELY TO THE CORRECT VALUES. 
 

GENERAL FORM OF AN ARIMA MODEL 

 
THE GENERAL FORM OF A (NONSEASONAL) ARIMA MODEL IS 
 

𝜑(𝐵)𝑧𝑡 = 𝜙(𝐵)∇
𝑑𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 

 
WHERE θ0 IS A CONSTANT, 
 

𝜑(𝐵) = 𝜙(𝐵)∇𝑑= 𝜙(𝐵)(1 − 𝐵)𝑑 = 1 − 𝜑1𝐵 −⋯− 𝜑𝑝+𝑑𝐵
𝑝+𝑑  

 
𝜙(𝐵) = 1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵

𝑝 

AND 
𝜃(𝐵) = 1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵

𝑞 . 

 
IN MODELS CONTAINING DIFFERENCE OPERATORS (FACTORS OF (1 – B)), θ0 IS 
USUALLY ZERO.  THE MODEL ERROR TERMS, THE a’s, ARE REFERRED TO AS 
“SHOCKS.” 
 
THE OPERATOR φ(B) IS CALLED THE AUTOREGRESSIVE OPERATOR.  IT IS ASSUMED 
TO BE STATIONARY, I.E., TO HAVE ROOTS (SOLUTIONS TO φ(B) = 0) OUTSIDE THE 
UNIT CIRCLE. 
 
THE OPERATOR ϕ(B) IS CALLED THE GENERALIZED AUTOREGRESSIVE OPERATOR.  
IT CONTAINS d ROOTS ON THE UNIT CIRCLE (SPECIFICALLY, ALL EQUAL TO ONE).  
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THE OPERATOR θ(B) IS CALLED THE MOVING AVERAGE OPERATOR.  IT IS 
ASSUMED TO BE INVERTIBLE, I.E., TO HAVE ROOTS OUTSIDE THE UNIT CIRCLE. 
 
IN THE FOLLOWING WE SHALL ASSUME THAT θ0 = 0. 
 

ALTERNATIVE FORMS OF AN ARIMA MODEL 

 
THREE DIFFERENT FORMS OF AN ARIMA MODEL ARE 
 

1. THE DIFFERENCE EQUATION FORM, IN WHICH THE CURRENT VALUE OF THE 
OUTPUT, zt, IS EXPRESSED IN TERMS OF THE z’s AND CURRENT AND 
PREVIOUS VALUES OF THE a’s. 

2. THE RANDOM-SHOCK FORM OF THE MODEL, IN WHICH THE CURRENT 
VALUE OF zt IS EXPRESSED IN TERMS OF CURRENT AND PREVIOUS a’s. 

3. THE INVERTED FORM OF THE MODEL, IN WHICH THE CURRENT VALUE OF zt 
IS EXPRESSED IN TERMS OF A WEIGHTED SUM OF PREVIOUS z’s AND THE 
CURRENT a (I.E., at). 

 
DEPENDING ON WHAT IS BEING DISCUSSED, ONE FORM IS MORE USEFUL THAN 
THE OTHERS. 
 
THESE THREE FORMS OF AN ARIMA MODEL ARE NOW DESCRIBED IN FURTHER 
DETAIL. 
 
DIFFERENCE-EQUATION FORM OF THE MODEL 
 
THE GENERAL FORM OF THE MODEL IS 
 

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 . 
 
FOR THE DIFFERENCE-EQUATION FORM WE SIMPLY EXPAND THE ϕ AND θ 
POLYNOMIALS AND TRANSFER ALL BUT THE CURRENT zt TO THE RIGHT-HAND-
SIDE OF THE MODEL EQUATION.  THAT IS: 
 

(1 − 𝜑1𝐵 −⋯− 𝜑𝑝+𝑑𝐵
𝑝+𝑑)𝑧𝑡 = (1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵

𝑞)𝑎𝑡 

OR 
𝑧𝑡 − 𝜑1𝑧𝑡−1 −⋯− 𝜑𝑝+𝑑𝑧𝑡−𝑝−𝑑 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 
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OR 
𝑧𝑡 = 𝜑1𝑧𝑡−1 +⋯+ 𝜑𝑝+𝑑𝑧𝑡−𝑝−𝑑 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 . 

 
THE GENERAL FORM OF THE MODEL IS USED TO COMPACTLY DESCRIBE THE 
MODEL, AND TO SUCCINCTLY COMPARE ONE MODEL TO ANOTHER. 
 
RANDOM-SHOCK FORM OF THE MODEL 
 
IT WAS DISCUSSED EARLIER THAT A STATIONARY STOCHASTIC PROCESS MAY BE 
EXPRESSED AS AN INFINITE SERIES (THE WOLD DECOMPOSITION): 
 

𝑧𝑡 = 𝜙
−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡 

 
WHERE 
 

𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵) = 1 − 𝜓1𝐵 − 𝜓2𝐵
2 −⋯. 

 
SINCE A GENERAL ARIMA MODEL IS NOT STATIONARY, HOWEVER, THE WOLD 
THEOREM DOES NOT APPLY, AND IT CANNOT BE ASSERTED ON THAT BASIS THAT 
AN INFINITE-SERIES REPRESENTATION EXISTS.  IN FACT, FOR NONSTATIONARY 
PROCESSES, THIS IS NOT POSSIBLE.  IT IS POSSIBLE, HOWEVER, TO EXPRESS AN 
ARIMA MODEL IN A TRUNCATED (FINITE-SERIES) FORM, WHICH IS USEFUL FOR 
UPDATING FORECASTS AND CALCULATING FORECAST VARIANCES. 
 
THIS REPRESENTATION IS AS FOLLOWS: 
 

𝑧𝑡 =∑ 𝜓𝑖𝑎𝑡−𝑗 + 𝐶𝑘(𝑡 − 𝑘)
𝑡−𝑘−1

𝑗=0
 

 
WHERE Ck(t-k) IS THE COMPLEMENTARY FUNCTION, OR GENERAL SOLUTION OF 
THE DIFFERENCE EQUATION 
 

𝜑(𝐵)𝐶𝑘(𝑡 − 𝑘) = 0. 
 
IT CAN BE SHOWN THAT THIS REPRESENTATION IS EQUAL TO: 
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𝑧𝑡 =∑ 𝜓𝑖𝑎𝑡−𝑗 + 𝐸𝑘[𝑧𝑡]
𝑡−𝑘−1

𝑗=0
 

 
WHERE Ek[zt] DENOTES THE CONDITIONAL EXPECTATION OF zt AT TIME k.  SEE 
BJRL pp. 97-105 FOR DISCUSSION. 
 
THE Ψ WEIGHTS ARE OBTAINED BY EQUATING COEFFICIENTS OF B IN THE 
EXPRESSION 
 

(1 − 𝜑1𝐵 −⋯− 𝜑𝑝+𝑑𝐵
𝑝+𝑑)(1 + 𝜓1𝐵 + 𝜓2𝐵

2 −⋯) = (1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵
𝑞). 

 
THAT IS, RECURSIVELY FROM THE EXPRESSION 
 

𝜓𝑗 = 𝜑1𝜓𝑗−1 + 𝜑2𝜓𝑗−2 +⋯+ 𝜑𝑝+𝑑𝜓𝑗−𝑝−𝑑 − 𝜃𝑗 ⁡⁡𝑗 > 0 

 
WHERE Ψ0 = 1, Ψj = 0 FOR j < 0 and θj = 0 FOR j > q. 
 
IT CAN BE SHOWN THAT 
 
𝐸𝑘[𝑧𝑡] = 𝐸𝑘−𝑚[𝑧𝑡−𝑘+𝑚] + 𝜓𝑡−𝑘𝑎𝑘 + 𝜓𝑡−𝑘+1𝑎𝑘−1 +⋯+𝜓𝑡−𝑘+𝑚−1𝑎𝑘−𝑚+1. 

 
THIS EXPRESSION SHOWS HOW TO UPDATE A FORECAST FROM ONE POINT IN 
TIME (I.E., t) TO THE NEXT. 
 
INVERTED FORM OF THE MODEL 
 
IN THE GENERAL FORM OF THE MODEL, 
 

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 . 
 
THE POLYNOMIAL θ(B) HAS ROOTS OUTSIDE THE UNIT CIRCLE, I.E., THE PROCESS 
IS INVERTIBLE, AND MAY BE EXPRESSED AS 
 

𝑎𝑡 = 𝜃
−1(𝐵)𝜑(𝐵)𝑧𝑡 = 𝜋(𝐵)𝑧𝑡 . 

 
THE π WEIGHTS ARE DETERMINED IN THE SAME WAY AS THE Ψ WEIGHTS WERE, 
ABOVE. 
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WE WRITE 
 

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 = 𝜃(𝐵)𝜋(𝐵)𝑧𝑡 
 
AND OBTAIN THE π WEIGHTS BY EQUATING COEFFICIENTS OF B IN THE 
EXPRESSION 
 

𝜑(𝐵) = 𝜃(𝐵)𝜋(𝐵). 
 
THIS YIELDS 
 

(1 − 𝜑1𝐵 −⋯− 𝜑𝑝+𝑑𝐵
𝑝+𝑑) = (1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵

𝑞)(1 − 𝜋1𝐵 − 𝜋2𝐵
2 −⋯). 

 
HENCE THE π WEIGHTS MAY BE DETERMINED RECURSIVELY FROM 
 

𝜋𝑗 = 𝜃1𝜋𝑗−1 + 𝜃2𝜋𝑗−2 +⋯+ 𝜃𝑞𝜋𝑗−𝑞 + 𝜑𝑗 ⁡⁡𝑗 > 0 

 
WHERE π0 = -1, πj = 0 FOR j < 0 and ϕj = 0 FOR j > p+d. 
 
THE INVERTED FORM OF THE MODEL CAN BE WRITTEN AS 
 

𝑧𝑡 =∑ 𝜋𝑗𝑧𝑡−𝑗 + 𝑎𝑡
∞

𝑗=1
. 

 
SINCE THE SERIES Σπj IS CONVERGENT, THE WEIGHTS πj DIE OUT, SO THAT THE 
CURRENT VALUE OF THE TIME SERIES DEPENDS MAINLY ON VALUES OF πj IN THE 
RECENT PAST.  THIS IS IN CONTRAST TO THE RANDOM-SHOCK MODEL, 
 

𝑧𝑡 =∑ 𝜓𝑖𝑎𝑡−𝑗 + 𝐸𝑘[𝑧𝑡]
𝑡−𝑘−1

𝑗=0
 

 
WHERE THE WEIGHTS DO NOT DIE OUT FOR NONSTATIONARY MODELS (I.E., THE 
TERM 𝐸𝑘[𝑧𝑡] DOES NOT DECREASE TO ZERO AS k INCREASES). 
 

FORECASTING 
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ONCE A MODEL PASSES THE VARIOUS TESTS OF MODEL ADEQUACY, IT MAY BE 
USED AS A BASIS FOR FORECASTING, I.E., PREDICTING THE FUTURE VALUE OF THE 
PROCESS, GIVEN AN OBSERVED SEQUENCE OF OBSERVATIONS. 
 
THE OBJECTIVE IS TO ESTIMATE THE VALUE OF 
 

𝑧𝑡+_ℓ 
 
FOR INTEGER ℓ > 0, WHERE WE HAVE OBSERVATIONS 
 

𝑧1, 𝑧2, … , 𝑧𝑡 . 
 
THE TIME t IS CALLED THE ORIGIN OF THE FORECAST, AND THE VALUE OF ℓ 
ISCALLED THE LEAD TIME OF THE FORECAST.  THIS FORECAST WILL BE DENOTED 
BY 
 

𝑧̂𝑡(ℓ). 
 
THE STANDARD APPROACH TO FORECASTING IS TO DETERMINE THE FORECAST 
THAT HAS MINIMUM MEAN SQUARED ERROR OF PREDICTION, I.E. THE ONE FOR 
WHICH 
 

𝐸(𝑧𝑡+ℓ − 𝑧̂𝑡(ℓ))
2 

 
IS MINIMIZED.  IT CAN BE SHOWN THAT THIS FORECAST IS THE EXPECTED VALUE 
OF 𝑧𝑡+ℓ CONDITIONAL ON THE OBSERVATIONS 𝑧1, 𝑧2, … , 𝑧𝑡: 
 

𝑧̂𝑡(ℓ) = 𝐸(𝑧𝑡+ℓ|𝑧1, 𝑧2, … , 𝑧𝑡). 
 
TO CALCULATE THE FORECAST, THIS EXPECTED VALUE MUST BE DETERMINED.  
WHILE THIS PRESENTATION DOES NOT GENERALLY PRESENT MATHEMATICAL 
PROOFS, THE DERIVATION OF AN EXPRESSION FOR THIS EXPECTED VALUE IS 
STRAIGHTFORWARD IN THE CASE IN WHICH THE MODEL IS STATIONARY, AND 
WILL BE PRESENTED. 
 
IN THE STATIONARY CASE, WE MAY WRITE 
 



36 
 

𝑧𝑡+ℓ =∑ 𝜓𝑗𝑎𝑡+ℓ−𝑗 .
∞

𝑗=0
 

 
THE OBJECTIVE IS TO CONSTRUCT A FORECAST 𝑧̂𝑡(ℓ) OF 𝑧𝑡+ℓ WHICH IS A LINEAR 
COMBINATION OF CURRENT AND PREVIOUS OBSERVATIONS, zt, zt-1, zt-2,…, OR, 
EQUIVALENTLY, OF CURRENT AND PREVIOUS SHOCKS, at, at-1, at-2…. 
 
LET US DENOTE THE FORECAST AS 
 

𝑧̂𝑡(ℓ) = 𝜓ℓ
∗𝑎𝑡 + 𝜓ℓ+1

∗ 𝑎𝑡−1 + 𝜓ℓ+2
∗ 𝑎𝑡−2 +⋯, 

 
WHERE THE WEIGHTS Ψj* ARE TO BE DETERMINED TO MINIMIZE THE MEAN- 
SQUARED ERROR OF PREDICTION (OR MEAN SQUARED FORECAST ERROR).  THE 
MEAN-SQUARED FORECAST ERROR IS 
 

𝐸(𝑧𝑡+ℓ − 𝑧̂𝑡(ℓ))
2 = (1 + 𝜓1

2 +⋯+𝜓ℓ−1
2 )𝜎𝑎

2 +∑ (𝜓ℓ+𝑗 − 𝜓ℓ+𝑗
∗ )2𝜎𝑎

2
∞

𝑗=0
, 

 
WHICH IS MINIMIZED BY SETTING 𝜓ℓ+𝑗

∗ = 𝜓ℓ+𝑗. 

 
IT THEN FOLLOWS THAT 
 

𝑧𝑡+ℓ = (𝑎𝑡+ℓ + 𝜓1𝑎𝑡+ℓ+1 +⋯+𝜓ℓ−1𝑎𝑡+1) + (𝜓ℓ𝑎𝑡 + 𝜓ℓ+1𝑎𝑡−1+, , , )
= 𝑒𝑡(ℓ) + 𝑧̂𝑡(ℓ) 

 
WHERE 

𝑒𝑡(ℓ) = (𝑎𝑡+ℓ + 𝜓1𝑎𝑡+ℓ+1 +⋯+𝜓ℓ−1𝑎𝑡+1) 
 
IS THE ERROR OF THE FORECAST 𝑧̂𝑡(ℓ) AT LEAD TIME ℓ. 
 
THE EXPECTED VALUE OF 𝑒𝑡(ℓ) IS ZERO (SINCE THE EXPECTED VALUE OF EACH OF 
THE a’s IS ZERO).  THE VARIANCE OF 𝑒𝑡(ℓ) IS 
 

𝑣𝑎𝑟[𝑒𝑡(ℓ)] = (1 + 𝜓1
2 + 𝜓2

2 +⋯+𝜓ℓ−1
2 )𝜎𝑎

2. 

 
ASSUMING THAT THE at ARE INDEPENDENT, WE HAVE (IN THE STATIONARY CASE) 
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𝐸[𝑎𝑡+𝑗|𝑧𝑡 , 𝑧𝑡−1, … ] = 0, 𝑗 > 0 

 
SO 
 

𝑧̂𝑡(ℓ) = 𝜓ℓ𝑎𝑡 + 𝜓ℓ+1𝑎𝑡−1 +⋯ = 𝐸𝑡[𝑧𝑡+ℓ]. 
 
THAT IS, THE MINIMUM (LINEAR) MEAN-SQUARED-ERROR FORECAST AT ORIGIN t 
FOR LEAD TIME ℓ IS THE CONDITIONAL EXPECTATION OF 𝑧𝑡+ℓ AT TIME t.  
CONSIDERED AS A FUNCTION OF ℓ FOR FIXED T, 𝑧̂𝑡(ℓ) IS CALLED THE FORECAST 
FUNCTION FOR ORIGIN t. 
 
NOTE THAT THE PRECEDING PROOF ASSUMED STATIONARITY.  THE GENERAL 
FORM OF THE ARIMA MODEL IS NONSTATIONARY, AND DERIVATION OF THE 
FORECAST FUNCTION IN THE GENERAL (NONSTATIONARY) CASE IS A LITTLE 
DIFFERENT. 
 
CALCULATION OF THE FORECAST MAY BE DONE IN THREE DIFFERENT WAYS, 
CORRESPONDING TO THE THREE DIFFERENT REPRESENTATIONS OF THE MODEL.  
IN THIS PRESENTATION, WE SHALL DISCUSS FORECASTING USING THE 
DIFFERENCE-EQUATION REPRESENTATION.  SEE CHAPTER 5 (pp. 129 – 176) OF 
BJRL FOR DETAILED DISCUSSION. 
 
FORECASTING USING THE DIFFERENCE-EQUATION FORM 
 
THE FORMULA FOR CALCULATING FORECASTS FROM THE DIFFERENCE-EQUATION 
FORM OF AN ARIMA MODEL IS 
 

𝑧̂𝑡(ℓ) =∑ 𝜑𝑗𝑧̂𝑡(ℓ − 𝑗) −∑ 𝜃𝑗𝑎𝑡+ℓ−𝑗
𝑞

𝑗=ℓ

𝑝+𝑑

𝑗=1
 

 
WHERE 𝑧̂𝑡(−𝑗) = [𝑧𝑡−𝑗] DENOTES THE OBSERVED VALUE zt-j FOR j >= 0 AND THE 

MOVING AVERAGE TERMS ARE NOT PRESENT FOR ℓ > q.  THE VALUE OF THE 
MOVING AVERAGE TERM (MODEL ERROR TERM) at IS ESTIMATED AS 
 

𝑎𝑡 = 𝑧𝑡 − 𝑧̂𝑡−1(1). 
 
FORECASTING USING A DIFFERENCE EQUATION – ADDITIONAL DETAILS 
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THIS SUBSECTION PRESENTS SOME ADDITIONAL DISCUSSION OF THE PROCEDURE 
FOR CALCULATING A FORECAST FROM THE DIFFERENCE-EQUATION 
REPRESENTATION.  THE ISSUE THAT IS ADDRESSED IS TO USE THE PRECEDING 
FORMULA, VALUES OF THE a’s MUST BE AVAILABLE FOR q TIMES PREVIOUS TO 
THE FORECAST ORIGIN.  THE EASIEST WAY TO ESTIMATE THESE a’s IS TO 
COMPUTE FORECASTS FROM THE BEGINNING OF THE AVAILABLE SERIES, EVEN 
THOUGH FORECASTS ARE USUALLY DESIRED ONLY FROM THE LAST AVAILABLE 
OBSERVATION.  THIS IS DONE AS FOLLOWS. 
 
THE GENERAL ARIMA MODEL MAY BE EXPRESSED IN THE FORM 
 

(1 − 𝜑1𝐵 −⋯− 𝜑𝑝+𝑑𝐵
𝑝+𝑑)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 

 
OR 
 

𝑧𝑡 = (𝜑1𝐵 +⋯+ 𝜑𝑝+𝑑𝐵
𝑝+𝑑)𝑧𝑡 + 𝜃(𝐵)𝑎𝑡 

 
OR 
 

𝑧𝑡 = 𝜑1𝑧𝑡−1 +⋯+ 𝜑𝑝+𝑑𝑧𝑡−𝑝−𝑑 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 . 

 
THIS FORM PROVIDES THE BASIS FOR AN ITERATIVE METHOD FOR CALCULATING 
THE FORECAST.  RECALL THAT IN AN ACCEPTABLE ARIMA MODEL, THE θ 
POLYNOMIAL IS INVERTIBLE, I.E., ITS ROOTS ARE OUTSIDE THE UNIT CIRCLE.  THIS 
IMPLIES THAT THE INFLUENCE OF THE MODEL ERROR TERMS (OR “SHOCKS”) ON 
FUTURE VALUES OF THE PROCESS DIMINISHES IN TIME. 
 
TO IMPLEMENT THIS METHOD, FORECASTING IS DONE FROM TIME ORIGIN p + d: 
 

𝑧̂𝑝+𝑑(ℓ) = 𝜑1𝑧𝑝+𝑑 +⋯+ 𝜑𝑝+𝑑𝑧1 + 𝑎𝑝+1 − 𝜃1𝑎𝑝 −⋯− 𝜃𝑞𝑎𝑝−𝑞+1. 

 
FOR THIS FIRST FORECAST, THE ERROR TERMS ap+1, ap,…,ap-q+1 ARE ESTIMATED BY 
THEIR EXPECTED VALUES, ZEROS.  THIS YIELDS 
 

𝑧̂𝑝+𝑑(ℓ) = 𝜑1𝑧𝑝+𝑑 +⋯+ 𝜑𝑝+𝑑𝑧1. 
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THE VALUE OF ap+1 IS ESTIMATED AS THE DIFFERENCE BETWEEN THE FORECAST 
VALUE 𝑧̂𝑝+𝑑(ℓ) AND THE TRUE (OBSERVED) VALUE zp+d+1: 

 
𝑎̂𝑝+1 = 𝑧𝑝+𝑑+1 − 𝑧̂𝑝+𝑑(ℓ). 

 
THE SAME PROCEDURE IS APPLIED TO CONSTRUCT 𝑧̂𝑝+1(ℓ), BUT NOW USING THE 

ESTIMATED VALUE 𝑎̂𝑝+1 FOR ap+1.  THE ERROR TERM ap+2 IS ESTIMATED AS 

 
𝑎̂𝑝+2 = 𝑧𝑝+𝑑+2 − 𝑧̂𝑝+𝑑+1(1). 

 
AFTER MAKING q FORECASTS IN THIS WAY, ESTIMATED VALUES ARE AVAILABLE 
FOR ALL ats REQUIRED BY THE MODEL EQUATION. 
 
THIS FORECAST PROCESS IS CONTINUED UP TO THE PRESENT TIME, t.  FOR 
MAKING FORECASTS OF zt BEYOND TIME t, THE VALUES OF at (at+1, at+2,…) ARE 
UNKNOWN, AND THEIR EXPECTED VALUES, ZEROS, ARE USED.   
 
SINCE THE PROCESS IS ASSUMED INVERTIBLE, THE EFFECT OF ASSUMING ZEROS 
FOR THE INITIAL VALUES OF THE ats DIES OUT AS THE ITERATIVE FORECASTING 
PROCEDURE CONTINUES. 
 
UPDATING FORECASTS USING Ψ WEIGHTS 
 
ONCE AN INITIAL FORECAST HAS BEEN DETERMINED, THERE IS AN EASY WAY TO 
CALCULATE FUTURE FORECASTS FROM IT, AS NEW OBSERVATIONS BECOME 
AVAILABLE.  THIS FORMULA IS: 
 

𝑧̂𝑡+1(ℓ) = 𝑧̂𝑡(ℓ + 1) + 𝜓ℓ𝑎𝑡+1 
 
WHERE  

𝑎𝑡+1 = 𝑧𝑡+1 − 𝑧̂𝑡(1). 
 
FORECAST ERROR VARIANCE AND PROBABILITY LIMITS 
 
THE FORECAST ERROR VARIANCES ARE DETERMINED FROM FORMULAS THAT 
INVOLVE THE Ψ WEIGHTS.  THE RECURSIVE FORMULA FOR DETERMINING THOSE 
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WEIGHTS WAS PRESENTED ABOVE (IN THE SECTION DEALING WITH THE THREE 
ALTERNATIVE FORMS OF AN ARIMA MODEL). 
 
THE VARIANCE OF THE FORECAST ERROR WAS GIVEN ABOVE, IN TERMS OF THE Ψ 
WEIGHTS, AS 
 

𝑣𝑎𝑟[𝑒𝑡(ℓ)] = (1 + 𝜓1
2 + 𝜓2

2 +⋯+𝜓ℓ−1
2 )𝜎𝑎

2. 

 
IF THE MODEL ERROR TERMS ARE APPROXIMATELY NORMALLY DISTRIBUTED, 
95% PROBABILITY LIMITS ARE EQUAL TO THE FORECAST ESTIMATE PLUS AND 
MINUS 1.96 TIMES THE SQUARE ROOT OF THE VARIANCE. 
 
THE PRECEDING IS A METHOD OF MAKING FORECASTS ASSUMING THAT THE 
TRUE MODEL IS KNOWN.  IN PRACTICE, THE MODEL IS NOT KNOWN, AND 
ESTIMATED VALUES ARE USED FOR THE MODEL PARAMETERS.  IT CAN BE SHOWN 
THAT FORECASTS BASED ON ESTIMATED PARAMETER VALUES ARE UNBIASED. 
 
THE FORMULA PRESENTED ABOVE FOR THE FORECAST ERROR VARIANCE 
ASSUMED THAT THE PARAMETER VALUES WERE KNOWN, NOT ESTIMATED.  FOR 
MODELS ESTIMATED FROM LARGE SAMPLES, THESE FORMULAS MAY BE USED.  
FOR MODELS ESTIMATED FROM SMALL SAMPLES, MODIFIED FORMULAS THAT 
TAKE INTO ACCOUNT THE ERROR ASSOCIATED WITH PREDICTION OF THE MODEL 
PARAMETERS ARE AVAILABLE AND SHOULD BE USED (E.G., BOOTSTRAPPING). 
 

IMPULSE RESPONSE FUNCTION 

 
ABOVE, EXPRESSIONS WERE PRESENTED FOR THE IMPULSE RESPONSE FUNCTION 
FOR A SPECIFIED (TRUE) MODEL, IN THE CASE OF A STATIONARY STOCHASTIC 
PROCESS.  WHEN THE TRUE MODEL IS NOT KNOWN AND THE MODEL 
PARAMETERS MUST BE ESTIMATED FROM DATA, THE IMPULSE RESPONSE 
FUNCTION IS ESTIMATED BY SUBSTITUTING ESTIMATED PARAMETER VALUES IN 
THE FORMULAS FOR THE TRUE MODEL.  THIS PROCEDURE PRODUCES 
CONSISTENT ESTIMATES OF THE IMPULSE RESPONSE FUNCTION. 
 
FOR A HOMOGENEOUS NONSTATIONARY PROCESS, AS MENTIONED, IT IS NOT 
POSSIBLE TO EXPRESS THE IMPULSE RESPONSE FUNCTION AS AN INFINITE SERIES.  
IN THIS CASE, A FINITE NUMBER OF THE Ψ WEIGHTS MAY BE CALCULATED, AS 
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DESCRIBED IN THE SECTION THAT DESCRIBED REPRESENTING AN ARIMIA 
PROCESS IN TERMS OF RANDOM SHOCKS. 
 
AS MENTIONED EARLIER, THE IMPULSE RESPONSE FUNCTION INDICATES THE 
AVERAGE CHANGE IN THE OUTPUT (zt) CORRESPONDING TO A UNIT CHANGE IN 
THE INPUT (at), FOR at GENERATED ACCORDING TO A CAUSAL MODEL.  IF THE 
MODEL IS ESTIMATED FROM DATA IN WHICH THE at ARE SIMPLY OBSERVED, NOT 
CONTROLLED (FORCED), THEN THE IRF IS AN ESTIMATE OF THE CHANGE TO BE 
EXPECTED IN THE OUTPUT CORRESPONDING TO AN OBSERVED UNIT CHANGE IN 
THE INPUT.  IF THE MODEL IS ESTIMATED FROM EXPERIMENTAL-DESIGN DATA IN 
WHICH RANDOMIZED FORCED CHANGES ARE MADE IN THE INPUT, THEN THE IRF 
IS AN ESTIMATE OF THE CHANGE TO BE EXPECTED IN THE OUTPUT IF FORCED 
CHANGES ARE MADE AS UNDER THE EXPERIMENTAL CONDITONS FOR WHICH THE 
DATA USED TO ESTIMATE THE MODEL WERE COLLECTED. 
 
THE IMPULSE RESPONSE FUNCTION IS OF GREATER INTEREST FOR MODELS THAT 
CONTAIN COVARIATES (VARIABLES OF THE MODEL OTHER THAN MODEL ERROR 
TERMS) THAN FOR MODELS THAT DO NOT.  THAT IS, IT IS OF GREATER INTEREST 
TO KNOW THE RESPONSE OF A CHANGE IN AN EXPLANATORY VARIABLE THAN IN 
A MODEL ERROR (“SHOCK”).  
 

ALTERNATIVE REPRESENTATIONS: UNIQUENESS OF MODEL, JOINT PDF, ACF 

(NORMAL) 

 
UNDER THE ASSUMPTION OF INVERTIBILITY, IF A PARTICULAR 
AUTOCORRELATION FUNCTION CORRESPONDS TO AN ARMA MODEL, THEN THAT 
MODEL IS UNIQUE (AMONG ALL ARMA MODELS). 
 
MORE SPECIFICALLY, A STATIONARY INVERTIBLE ARIMA STOCHASTIC PROCESS IS 
UNIQUELY DEFINED BY THE JOINT PROBABILITY DISTRIBUTION FUNCTION OF A 
SEQUENCE OF OBSERVED VALUES (zt, zt+1, …, zt+k) OR BY THE ARIMA MODEL 
SPECIFICATION.  IF THE PROCESS OBEYS A NORMAL DISTRIBUTION, THEN IT IS 
CHARACTERIZED (UNIQUELY DEFINED) BY THE MEAN, VARIANCE, AND 
AUTOCOVARIANCE FUNCTION. 
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ALTERNATIVE REPRESENTATIONS: STATE SPACE, KALMAN FILTER 

 
THE PRECEDING MATERIAL DESCRIBES THE BASIC THEORY OF UNIVARIATE TIME 
SERIES ANALYSIS, USING ARIMA STOCHASTIC PROCESS MODELS.  AN ARIMA 
MODEL IS USED TO REPRESENT THE THEORETICAL (TRUE, POPULATION) 
STOCHASTIC PROCESS THAT GENERATES THE DATA, AND FORECASTS ARE 
CONSTRUCTED DIRECTLY FROM THE ESTIMATED ARIMA MODEL. 
 
AN ALTERNATIVE METHODOLOGY FOR CONSTRUCTING TIME SERIES MODELS 
AND GENERATING FORECASTS IS BASED ON THE USE OF STATE SPACE 
REPRESENTATIONS OF TIME SERIES.  THE STATE SPACE METHODOLOGY IS MORE 
GENERAL THAN THE METHODOLOGY PRESENTED ABOVE, IN THAT IT ALLOWS FOR 
MEASUREMENT ERRORS (THE PRECEDING DISCUSSION ASSUMES THAT THE 
PROCESS VALUE, zt, IS KNOWN EXACTLY, WITHOUT MEASUREMENT ERROR), AND 
ALLOWS FOR TIME-VARYING PARAMETERS (IN THE PRECEDING DISCUSSION, THE 
MODEL PARAMETERS ARE FIXED). 
 
THE OPTIMAL FORECASTER FOR A STATE SPACE REPRESENTATION IS CALLED THE 
KALMAN FILTER. 
 
THE STATE SPACE METHODOLOGY MAY BE APPLIED EITHER TO UNIVARIATE OR 
MULTIVARIATE TIME SERIES.  THE FORMULAS INVOLVED ARE IDENTICAL IN THE 
UNIVARIATE AND MULTIVARIATE CASES.  TO AVOID REDUNDANCY, DISCUSSION 
OF STATE SPACE FORECASTING AND THE KALMAN FILER IS DEFERRED UNTIL THE 
DISCUSSION OF MULTIVARIATE TIME SERIES MODELS. 
 

EXTENSIONS: ARCH, GARCH 

 
IN THE PRECEDING DISCUSSION, THE (STATIONARITY) ASSUMPTION WAS MADE 
THAT THE ERROR VARIANCE OF THE STOCHASTIC PROCESS IS CONSTANT (OVER 
TIME).  IN SOME IMPORTANT APPLICATIONS, THIS ASSUMPTION IS UNTENABLE.  
FOR EXAMPLE, THE VARIABILITY OF STOCK AND COMMODITY PRICES IS KNOWN 
TO FLUCTUATE OVER TIME. 
 
A STOCHASTIC PROCESS FOR WHICH THE ERROR VARIANCE IS CONSTANT IS 
CALLED A HOMOSCEDASTIC (OR HOMOSKEDASTIC) PROCESS.  A STOCHASTIC 
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PROCESS FOR WHICH THE ERROR VARIANCE IS NOT CONSTANT IS CALLED A 
HETEROSCEDASTIC (OR HETEROSKEDASTIC) PROCESS. 
 
HETEROSCEDASTICITY IS A FORM OF NONSTATIONARY BEHAVIOR (AS IS THE 
HOMOGENEOUS NONSTATONARY BEHAVIOR ASSOCIATED WITH ROOTS OF THE 
AR POLYNOMIAL BEING LOCATED ON THE UNIT CIRCLE). 
 
STANDARD MODELS HAVE BEEN DEVELOPED TO REPRESENT HETEROSCEDASTIC 
BEHAVIOR.  THESE MODELS ARE CALLED AUTOREGRESSIVE CONDITIONAL 
HETEROSCEDASTICITY (ARCH) MODELS.  IN SUCH MODELS, THE VARIANCE OF THE 
CURRENT ERROR TERM IS A FUNCTION OF THE SIZES OF THE ERROR TERMS FOR 
PREVIOUS TIME PERIODS. 
 
FOR AN ARCH MODEL, THE ERROR VARIANCE OBEYS AN AUTOREGRESSIVE (AR) 
MODEL.  IF THE ERROR VARIANCE OBEYS AN AUTOREGRESSIVE MOVING 
AVERAGE MODEL (ARMA), THE MODELS IS CALLED A GENERALIZED 
AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) MODEL. 
 
THE ARCH AND GARCH MODELS WILL NOT BE DESCRIBED HERE.  DETAILED 
DESCRIPTIONS OF THESE MODELS ARE PRESENTED IN THE REFERENCES.  THE 
BASIC APPROACH TO DEVELOPMENT OF ARCH AND GARCH MODELS IS THE SAME 
AS FOR THE HOMOSCEDASTIC MODELS DESCRIBED ABOVE.  ALL THAT CHANGES IS 
THAT THE MODELS CONTAIN SOME ADDITIONAL PARAMETERS THAT DESCRIBE 
HOW THE VARIANCE CHANGES (E.G., USING AN ARMA MODEL TO REPRESENT 
THE VARIANCE). 
 

DETAILED EXAMPLE OF THE DEVELOPMENT OF A SINGLE-VARIABLE 

UNIVARIATE TIME SERIES MODEL 

 
IN THEIR ORIGINAL WORK, BOX AND JENKINS PRESENTED AN EXAMPLE IN WHICH 
AN ARIMA MODEL WAS DEVELOPED FOR A TIME SERIES OF MONTHLY AIRLINE 
TICKET SALES.  THIS EXAMPLE HAS BEEN PRESENTED IN MANY TEXTS, INCLUDING 
BJRL (pp. 310-325), CRYER (pp. 240 – 244) AND STATA. 
 
THIS EXAMPLE WILL NOW BE DESCRIBED IN DETAIL.  NUMERICAL 
COMPUTATIONS ASSOCIATED WITH THIS ANALYSIS WILL SHOWN USING THE FREE 
BOX-JENKINS PROGRAM POSTED AT INTERNET WEBSITE 
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http://www.foundationwebsite.org .  THAT PROGRAM ESTIMATES SINGLE-
VARIABLE BOX-JENKINS MODELS (SEASONAL OR NONSEASONAL) CONTAINING UP 
TO TWO PHI PARAMETERS AND TWO THETA PARAMETERS. IT PRODUCES 
FORECASTS, BUT NOT FORECAST ERROR VARIANCES.  IT USES THE 
“CONDITIONAL” ESTIMATION PROCEDURE, IN WHICH THE VALUES OF MODEL 
RESIDUALS PRIOR TO THE OBSERVED TIME SERIES ARE REPLACED BY ZEROS.  
THESE ESTIMATES ARE SLIGHTLY DIFFERENT FROM THOSE PRODUCED USING 
UNCONDITIONAL ESTIMATION (AS IN STATA). 
 
THE DATA ARE LOGARITHMS OF INTERNATIONAL AIRLINE TICKET SALES FROM 
JANUARY 1949 THROUGH DECEMBER 1960, A TOTAL OF n = 144 OBSERVATIONS. 
 
PROGRAM OUTPUT IS SHOWN, ON THE PAGES THAT FOLLOW,  FOR THE 
FOLLOWING CASES: 
 

1. RAW DATA (ALREADY TRANSFORMED TO LOGARITHMS) 
2. DIFFERENCING OF SPAN 1 
3. DIFFERENCING OF SPAN 12 
4. DIFFERENCING OF SPANS 1 AND 12 
5. DIFFERENCING OF SPANS 1 AND 12, AND ESTIMATION OF θ1 AND θ12. 

 

http://www.foundationwebsite.org/
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THE PLOT OF THE TIME SERIES CLEARLY SHOWS A NONSTATIONARY TIME SERIES 
WITH A SEASONAL COMPONENT OF s = 12 MONTHS. 
 
THE AUTOCORRELATION FUNCTION DECLINES VERY SLOWLY, AND DOES NOT 
EXHIBIT CYCLICAL BEHAVIOR.  THE ACF SUGGESTS HOMOGENEOUS 
NONSTATIONARY BEHAVIOR, SO SIMPLE DIFFERENCING IS APPLIED TO OBTAIN A 
STATIONARY TIME SERIES.  PLOTS ARE SHOWN OF THE ACFs OF TRANSFORMED 
DATA APPLYING SINGLE DIFFERENCES OF TIME SPANS 1 AND 12 AND A DOUBLE 
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DIFFERENCE OF SPANS 1 AND 12. THAT IS, IF THE ORIGINAL (UNTRANSFORMED) 
DATA ARE DENOTED AS zt, THEN THE TRANSFORMED SERIES ARE ∇𝑧𝑡, ∇12𝑧𝑡 and 
∇∇12𝑧𝑡. 
 
THE SINGLE-DIFFERENCED SERIES ARE NONSTATIONARY, BUT THE DOUBLE-
DIFFERENCED SERIES IS STATIONARY. 
 
FOR A MODEL INCLUDING A SPAN-1 AND SPAN-12 DIFFERENCING, IT IS 
ANTICIPATED THAT A REASONABLE MODEL CHOICE MIGHT BE OF ORDER (0,1,1) X 
(0,1,1)12, THAT IS, A MODEL OF THE FORM 
 
𝑤𝑡 = ∇∇12𝑧𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵

12)𝑎𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 − Θ𝑎𝑡−12 + 𝜃Θ𝑎𝑡−13. 
 
(SINCE THERE ARE BUT TWO THETA PARAMETERS FOR EACH TIME SPAN, WE 
SHALL USE THE SIMPLER NOTATION θ = θ12 AND Θ = θ12 IN THE FORMULAS THAT 
FOLLOW.) 
 
FOR THIS MODEL, THE AUTOCOVARIANCES OF wt ARE: 
 

𝛾0 = [1 + 𝜃
2 + Θ2 + (𝜃Θ)2]𝜎𝑎

2 = (1 + 𝜃2)(1 + Θ2)𝜎𝑎
2 

 
𝛾1 = [−𝜃 − Θ(𝜃Θ)]𝜎𝑎

2 = −𝜃(1 + Θ2)𝜎𝑎
2 

 
𝛾11 = 𝜃Θ𝜎𝑎

2 
 

𝛾12 = [−Θ − 𝜃(𝜃Θ)]𝜎𝑎
2 = −Θ(1 + 𝜃2)𝜎𝑎

2 
 

𝛾13 = 𝜃Θ𝜎𝑎
2. 

 
THE EXPRESSIONS FOR γ1 AND γ12 IMPLY 
 

𝜌1 =
−𝜃

1 + 𝜃2
 

AND 

𝜌12 =
−Θ

1 + Θ2
. 
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FROM THE SAMPLE DATA, ESTIMATED VALUES OF ρ1 AND ρ12 ARE OBTAINED AS 
𝜌̂1 = −.34 AND 𝜌̂12 = −.39.   
 
SUBSTITUTING THESE VALUES IN THE PRECEDING AND SOLVING FOR θ AND Θ 
YIELDS THE METHOD-OF-MOMENTS ESTIMATES FOR θ AND Θ. 
 
THE VALUES OF θ AND Θ ARE OBTAINED FROM THE QUADRATIC FORMULA: 
 

𝜃̂ =
−1 ± √1 − 4𝜌̂1

2

2𝜌1
= .39 

AND 
 

Θ̂ =
−1 ± √1 − 4𝜌̂12

2

2𝜌12
= .48. 

 
(NOTE THAT THE SOLUTION IS NOT UNIQUE; THE SOLUTION IS TAKEN THAT 
CORRESPONDS TO ROOTS OF (1 – θB) AND (1 – ΘB) BEING OUTSIDE THE UNIT 
CIRCLE, I.E., VALUES OF θ AND Θ LESS THAN ONE IN MAGNITUDE.) 
 
THE PRECEDING VALUES – METHOD-OF-MOMENT ESTIMATES – ARE CONSIDERED 
“ROUGH” INITIAL VALUES.  IMPROVED VALUES MAY BE OBTAINED BY THE 
METHOD OF LEAST SQUARES OR, EQUIVALENTLY, BY MAXIMIZING THE 
LIKELIHOOD ASSUMING A NORMAL DISTRIBUTION FOR THE MODEL ERROR 

TERMS.  APPLYING THAT METHOD YIELDS THE VALUES 𝜃̂ = .38 AND Θ̂ = .58.  
(THESE VALUES VARY SLIGHTLY FROM THOSE SHOWN IN BJRL, AND IN STATA 
BECAUSE SLIGHTLY DIFFERENT NUMERICAL ESTIMATION PROCEDURES ARE 
USED.) 
 
THE ESTIMATED VARIANCE OF THE MODEL RESIDUALS IS 
 

𝜎̂𝑎
2 = .00142 

 
AND THE ESTIMATED STANDARD DEVIATION OF THE MODEL RESIDUALS IS 
 

𝜎̂𝑎 = .0376. 
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THE MEAN OF THE RESIDUALS IS .00204.  THE t VALUE FOR THIS (FOR DEGREES OF 
FREEDOM = 128) IS .625.  THE STANDARD CHI-SQUARE STATISTIC FOR THE FIRST 
30 ESTIMATED AUTOCORRELATIONS OF THE RESIDUALS IS .165 (DEGREES OF 
FREEDOM = 30).  THESE STATISTICS SHOW NO EVIDENCE THAT THE MODEL IS 
INADEQUATE. 
 
THE PROGRAM OUTPUT INCLUDES A PLOT OF THE 12-AHEAD FORECAST FROM 
THE LAST OBSERVATION. 

3. SUMMARY OF MULTIVARIABLE UNIVARIATE MODELS (TRANSFER 

FUNCTION MODELS, DISTRIBUTED LAG MODELS) 

 
THE PRECEDING DISCUSSION ADDRESSES MODELS IN WHICH THE STOCHASTIC 
BEHAVIOR OF AN OBSERVED VARIABLE COULD BE DESCRIBED BY THE 
PROBABILITY DISTRIBUTION OF A SINGLE RANDOM VARIABLE, I.E., THE MODEL 
ERROR TERM.  SUCH MODELS, INVOLVING A SINGLE RANDOM VARIABLE, ARE 
CALLED UNIVARIATE MODELS.  THE MODEL ERROR TERM IS THE SINGLE INPUT TO 
THE SYSTEM, AND THE OBSERVED RANDOM VARIABLE IS THE SINGLE OUTPUT, 
DEPENDENT ON THE INPUT.  WE NOW TURN TO CONSIDERATION OF MODELS 
THAT INVOLVE MORE THAN A SINGLE INPUT, BUT STILL JUST A SINGLE OUTPUT. 
 
FOR THIS SITUATION, THE MODEL INPUTS MAY BE DETERMINISTIC VARIABLES OR 
RANDOM VARIABLES.  THE MODEL INPUTS INCLUDE EXPLANATORY VARIABLES 
AND A MODEL ERROR TERM.  THE MODEL OUTPUT IS AN EXPLAINED VARIABLE, 
DEPENDENT ON THE EXPLANATORY VARIABLES AND THE MODEL ERROR TERM. 
 
THE KEY POINT HERE IS THAT THE ESSENTIAL STOCHASTIC PROPERTIES OF THE 
TIME SERIES CAN BE DESCRIBED BY A UNIVARIATE DISTRIBUTION OF THE MODEL 
ERROR TERM.  ALTHOUGH A NUMBER OF RANDOM VARIABLES MAY BE PRESENT 
IN THE MODEL (E.G., THE EXPLANATORY VARIABLES OF A UNIVARIATE MULTIPLE 
REGRESSION MODEL), IT IS NOT NECESSARY TO USE A JOINT PROBABILITY 
DISTRIBUTION (OF MORE THAN ONE COMPONENT) TO DESCRIBE THE 
STOCHASTIC PROPERTIES OF THE SINGLE RESPONSE VARIABLE OF INTEREST. 
 
FOR THIS SECTION, WE SHALL ASSUME THAT THE MODEL EXPLANATORY 
VARIABLES ARE EXOGENOUS.  THERE ARE A NUMBER OF DEFINITIONS OF THE 
TERM EXOGENOUS.  THEY INVOLVE STATEMENTS ABOUT CONDITIONAL 
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DISTRIBUTIONS OR MODEL ERROR TERMS.  FOR THE PURPOSE OF ESTIMATING 
MODEL PARAMETERS, A VARIABLE IS EXOGENOUS IF KNOWLEDGE OF THE 
PROCESS GENERATING IT CONTAINS NO INFORMATION ABOUT THE PARAMETERS 
OF THE DISTRIBUTION OF THE MODEL OUTPUT VARIABLE, CONDITIONAL ON THE 
EXOGENOUS VARIABLE. 
 
THIS DEFINITION OF EXOGENEITY (INTRODUCED BY R. F. ENGLE, D. F. HENDRY, 
AND J. F. RICHARD IN 1983) RELATES TO THE SPECIFIC ISSUE OF ESTIMATING 
CERTAIN PARAMETERS.  IT DIFFERS FROM THE USUAL (ECONOMETRIC, MODEL-
ERROR-BASED) DEFINITION, INVOLVING COVARIANCES BETWEEN MODEL ERROR 
TERMS AND MODEL EXPLANATORY VARIABLES. 
 
WHETHER THE CONDITIONS HOLD CANNOT BE DETERMINED FROM ANALYSIS OF 
DATA.  (DATA ANALYSIS MIGHT FALSIFY EXOGENEITY, BUT IT CANNOT ESTABLISH 
IT.)  THEY ARE DETERMINED FROM A CAUSAL MODEL. 
 
EXOGENEITY IS ASSUMED BASED ON THEORETICAL CONSIDERATIONS.  WHETHER 
A VARIABLE IS EXOGENOUS (RELATIVE TO ESTIMATION OF ONE OR MORE MODEL 
PARAMETERS) IS DETERMINED FROM (OR SPECIFIED IN) A CAUSAL MODEL 
SHOWING THE CAUSAL RELATIONSHIPS AMONG ALL MODEL VARIABLES. 
 
IF THE MODEL RESIDUALS FOR AN EXPLANATORY VARIABLE ARE INDEPENDENT 
OF THOSE OF THE EXPLAINED VARIABLE, THEN THE EXPLANATORY VARIABLE IS 
EXOGENOUS.  IT WOULD HOLD, FOR EXAMPLE, IF THE EXPLANATORY VARIABLE 
WERE GENERATED INDEPENDENTLY OF THE EXPLAINED VARIABLE (E.G., AS IN A 
COMPUTER SIMULATION OR AS INPUT TO A CONTROLLED EXPERIMENT).  THE 
AMOUNT OF RAINFALL IN AN AREA WOULD EXOGENOUS IN ANY MODEL DEALING 
WITH ECONOMIC QUANTITIES. 
 
AN EXPLANATORY VARIABLE THAT IS STOCHASTICALLY INDEPENDENT OF THE 
OTHER MODEL VARIABLES IS EXOGENOUS, BUT REQUIRING EXPLANATORY 
VARIABLES TO BE INDEPENDENT IS A STRONGER CONDITION THAN IS NECESSARY.  
THE CONCEPTS OF EXOGENEITY ARE WEAKER THAN INDEPENDENCE. 
 
FOR ADDITIONAL DISCUSSION OF EXOGENEITY, SEE THE FOLLOWING 
REFERENCES: 
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BANERJEE, ANINDYA, JUAN DOLADO, JOHN W. GALBRAITH AND DAVID F. 
HENDRY, CO-INTEGRATION, ERROR CORRECTION, AND THE ECONOMETRIC 
ANALYSIS OF NON-STATIONARY DATA, OXFORD UNIVERSITY PRESS, 1993 
 
JUDEA PEARL, CAUSALITY: MODELS, REASONING, AND INFERENCE, 2nd ED 
(CAMBRIDGE UNIVERSITY PRESS, 2009). 
 
 HERE FOLLOWS SOME ADDITIONAL INFORMATION ABOUT EXOGENEITY. 
 
ENGLE ET AL. INTRODUCE THREE DIFFERENT LEVELS OF EXOGENEITY, 
CORRESPONDING TO DIFFERENT ESTIMATION PROBLEMS: INFERENCE, 
FORECASTING CONDITIONAL ON FORECASTS OF THE EXOGENOUS VARIABLES, 
AND POLICY ANALYSIS.  THESE LEVELS ARE WEAK EXOGENEITY, STRONG 
EXOGENEITY AND SUPER EXOGENEITY.  THE DEFINITIONS OF THESE EXOGENEITY 
CONCEPTS ARE PRESENTED ON PAGE 18 OF BANERJEE OP. CIT.  THEY 
CORRESPOND TO CONDITIONS ON THE DISTRIBUTION FUNCTIONS INVOLVED IN 
THE PROBLEM.  IF WEAK EXOGENEITY HOLDS, THEN THE MODEL PARAMETERS 
ARE ESTIMABLE.  IF STRONG EXOGENITY HOLDS, THEN FORECASTS MAY BE 
ESTIMATED CONDITIONAL ON FORECASTED VALUES OF THE EXOGENOUS 
VARIABLES, ASSUMING THAT THEIR DISTRIBUTION IS UNCHANGED.  IF SUPER 
EXOGENEITY HOLDS, THEN FORECASTS MAY BE MADE CONDITIONAL ON 
CHANGES IN THE PARAMETERS OF THE DISTRIBUTION OF THE EXOGENOUS 
VARIABLES. 
 
ENGLE’S CONDITIONS ARE EXPRSSED IN TERMS OF CONDITIONAL DISTRIBUTIONS.  
THE CONDITIONS ARE COMPLICATED.  IT WOULD APPEAR THAT ESTABLISHING 
EXOGENEITY BY DIRECTLY ESTABLISHING THE VERITY OF THESE CONDITIONS 
WOULD BE DIFFICULT.  A MORE STRAIGHTFORWARD APPROACH WOULD BE TO 
CONSTRUCT A CAUSAL MODEL DIAGRAM (A DIRECTED ACYCLIC GRAPH) 
SHOWING THE CAUSAL RELATIONSHIPS AMONG THE MODEL VARIABLES, AND 
ESTABLISHING WHETHER JUDEA PEARL’S ESTIMABILITY CONDITIONS HELD FOR 
ESTIMATES OF INTEREST. 
 
BANERJEE (OP. CIT. P 19) COMPARES THE PRECEDING THREE DEFINITIONS OF 
EXOGENEITY TO THE STANDARD ONES USED IN ECONOMETRIC ANALYSIS: STRICT 
EXOGENEITY AND PREDETERMINEDNESS.  IF ut IS THE MODEL ERROR TERM, THEN 
A VARIABLE zt IS STRICTLY EXOGENOUS IF E[ztut+i] = 0 FOR ALL i, AND IS 
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PREDETERMINED IF E[ztut+i] = 0 FOR ALL i>=0.  ENGLE SHOWS THAT THESE 
CONDITIONS ARE NEITHER NECESSARY NOR SUFFICIENT FOR VALID INFERENCE, 
SINCE THEY DO NOT RELATE TO PARAMETERS OF INTEREST. 
 
AMBIGUITY OF THE TERM “MULTIVARIATE” 
 
IT IS RECOGNIZED THAT A UNIVARIATE MODEL CONTAINING EXPLANATORY 
VARIABLES MAY BE REFERRED TO AS A “MULTIVARIATE” MODEL.  IN THE 
UNIVARIATE MODEL JUST DESCRIBED, THE OUTPUT VARIABLE AND THE 
EXPLANATORY VARIABLES MAY ALL BE RANDOM VARIABLES, AND THE MODEL 
COULD REASONABLY BE REFERRED TO AS A MULTIVARIATE MODEL.  IN THE CASE 
IN WHICH THERE IS A SINGLE OUTPUT VARIABLE AND THE EXPLANATORY 
VARIABLES ARE EXOGENOUS, HOWEVER, SOME OF THE CONCEPTS ARE SIMPLER 
THAN FOR THE GENERAL MULTIVARIATE CASE (OF MORE THAN ONE OUTPUT 
VARIABLE).  FOR THIS REASON, AND BECAUSE THE UNIVARIATE MODEL IS AN 
IMPORTANT SPECIAL CASE, IT IS ADDRESSED IN A SEPARATE SECTION. 
 
(IN THIS PRESENTATION, THE TERM “MULTIVARIATE” WILL BE USED TO REFER TO 
A SITUATION IN WHICH THE PROBABILITY DISTRIBUTION OF INTEREST IS A NON-
DEGENERATE (NON-TRIVIAL) ONE, OF DIMENSION GREATER THAN ONE, IN 
WHICH THE PROBABILITY MASS OCCURS IN MORE THAN ONE DIMENSION.  IF THE 
PROBABILITY DISTRIBUTION OF INTEREST IS ONE-DIMENSIONAL, THEN THE TERM 
“UNIVARIATE” WILL BE USED.  FOR EXAMPLE, A REGRESSION MODEL IN WHICH 
THERE IS A SINGLE DEPENDENT (EXPLAINED, RESPONSE, OUTPUT) VARIABLE AND 
SEVERAL EXPLANATORY VARIABLES (WHICH MAY OR MAY NOT BE RANDOM 
VARIABLES, BUT WHICH ARE NOT CORRELATED WITH THE MODEL ERROR TERM) 
IS A UNIVARIATE MODEL.  SOME AUTHORS SAY THAT A MULTIVARIATE 
SITUATION IS ONE IN WHICH THE RANDOM VARIABLES OF THE MODEL ARE 
INTERRELATED.  THIS DEFINITION DOES NOT WORK HERE, SINCE IN A REGRESSION 
MODEL THE DEPENDENT VARIABLE AND THE EXPLANATORY VARIABLES ARE 
INTERRELATED, BUT A UNIVARIATE PROBABILITY DISTRIBUTION SUFFICES TO 
DESCRIBE THE ESSENCE OF THE SITUATION.  WE REFER TO A UNIVARIATE MODEL 
INVOLVING EXPLANATORY VARIABLES AS A “MULTIVARIABLE” MODEL (NOT A 
“MULTIVARIATE” ONE) OR A “MULTIVARIABLE UNIVARIATE” MODEL.) 
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THE TERM “MULTIPLE TIME SERIES” MAY REFER EITHER TO THE CASE OF A 
UNIVARIATE MODEL WITH EXPLANATORY VARIATES, OR TO A GENERAL 
MULTIVARIATE MODEL (AND USUALLY TO THE LATTER). 
 
USING THE STANDARD METHODS OF ESTIMATION, SUCH AS LEAST SQUARES OR 
MAXIMUM LIKELIHOOD FOR A NORMAL DISTRIBUTION, THE NUMERICAL VALUES 
OF ESTIMATES OF INTEREST ARE THE SAME, WHETHER THE MODEL IS 
UNIVARIATE MODEL WITH EXOGENOUS EXPLANATORY VARIABLES, OR A 
GENERAL MULTIVARIATE MODEL.  WHAT DIFFERS IS THE INTERPRETATION OF 
VARIOUS QUANTITIES, AND THEIR SAMPLING DISTRIBUTIONS (AND RELATED 
QUANTITIES, SUCH AS PROPERTIES OF TESTS OF HYPOTHESES AND CONFIDENCE 
INTERVALS).  FOR EXAMPLE, IF THE EXPLANATORY VARIABLE IN A UNIVARIATE 
MODEL IS A RANDOM VARIABLE, THEN IT MAKES SENSE TO REFER TO THE 
COVARIANCE OF THAT VARIABLE WITH OTHER VARIABLES, AND A SUM OF CROSS 
PRODUCTS IS AN ESTIMATOR OF THE COVARIANCE, AND IT HAS A SAMPLING 
DISTRIBUTION.  OTHERWISE, IT IS SIMPLY A SUM OF CROSS PRODUCTS (NOT AN 
ESTIMATE OF A DISTRIBUTION PARAMETER OR MOMENT).  FOR SIMPLICITY OF 
EXPOSITION, A SUM OF CROSS PRODUCTS MAY BE REFERRED TO AS A 
COVARIANCE, WHETHER IT INVOLVES RANDOM VARIABLES OR NOT. 
 
UNIVARIATE TIME SERIES MODELS WITH EXOGENOUS VARIABLES ARE VARIOUSLY 
REFERRED TO AS TRANSFER-FUNCTION MODELS OR DISTRIBUTED-LAG MODELS 
OR MODELS WITH EXOGENOUS VARIABLES.  THE TERM “TRANSFER FUNCTION” IS 
USUALLY USED IN ENGINEERING APPLICATIONS AND THE TERM “DISTRIBUTED 
LAG” IN ECONOMIC APPLICATIONS.  WE SHALL USE THE TERM “TRANSFER 
FUNCTION.” 
 
UNIVARIATE BOX-JENKINS TYPE MODELS CONTAINING EXOGENOUS 
EXPLANATORY VARIABLES ARE SOMETIMES REFERRED TO AS ARIMAX MODELS 
(ARIMA PLUS “X” FOR EXOGENOUS). 
 
TO SIMPLIFY THIS PRESENTATION, WE SHALL IN THIS SECTION SUMMARIZE SOME 
FEATURES OF MULTIVARIABLE UNIVARIATE TIME SERIES MODELS, BUT DEFER 
DETAILED DISCUSSION OF IDENTIFICATION AND ESTIMATION PROCEDURES TO 
THE GENERAL MULTIVARIATE CASE.  TRANSFER FUNCTION MODELS MAY BE 
REPRESENTED AS SPECIAL CASES OF GENERAL MULTIVARIATE MODELS; THIS WILL 
BE DISCUSSED IN THE SECTION ON MULTIVARIATE MODELS. 
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THE RELATIONSHIP OF TRANSFER FUNCTION MODELS TO GENERAL 
MULTIVARIATE MODELS IS SOMEWHAT ANALOGOUS TO THE SITUATION IN 
ANALYSIS OF VARIANCE OR REGRESSION ANALYSIS, WHERE THE EXPLANATORY 
VARIABLES (“EFFECTS”) OF A MODEL MAY BE FIXED OR RANDOM.  THE 
ESTIMATES OF THE EFFECTS ARE THE SAME IN EITHER CASE, BUT THE 
DISTRIBUTIONAL CHARACTERISTICS (AND TESTS OF HYPOTHESES AND 
CONFIDENCE INTERVALS) DIFFER.  IN ENGINEERING APPLICATIONS, IT IS OFTEN 
POSSIBLE TO CONTROL THE LEVELS OF EXPLANATORY VARIABLES, AS IN A 
DESIGNED LABORATORY EXPERIMENT OR TESTING OF AN ELECTRONIC FILTER.  IN 
SUCH APPLICATIONS, THE EXPLANATORY VARIABLE MAY OR MAY NOT BE A 
RANDOM VARIABLE.  IN ECONOMIC APPLICATIONS, MANY VARIABLES MAY BE 
OBSERVED, BUT FEW ARE CONTROLLED.  IN ECONOMIC APPLICATIONS, 
ATTENTION HENCE FOCUSES ON THE CASE IN WHICH THE EXPLANATORY 
VARIABLES ARE RANDOM VARIABLES.  (IF THEY ARE FIXED, THEN THERE IS NO 
CORRELATION BETWEEN THEM AND THE MODEL ERROR TERM, AND THE LEAST-
SQUARES PROCEDURE PRODUCES UNBIASED ESTIMATES.  IF THEY ARE RANDOM, 
IT IS ESSENTIAL THAT THEY NOT BE CORRELATED WITH THE MODEL ERROR 
TERMS, OR ELSE THE PARAMETER ESTIMATES MAY BE BIASED.) 
 

A DISCRETE LINEAR TRANSFER FUNCTION MODEL 

 
THE FOLLOWING IS A REPRESENTATION OF A GENERAL CLASS OF TRANSFER-
FUNCTION MODELS.  SEE BJRL FOR DETAILS. 
 
SUPPOSE THAT THE SYSTEM OUTPUT, Yt, IS RELATED TO THE SYSTEM INPUT, Xt, 
BY THE EQUATION 
 

𝑌𝑡 − 𝛿1𝑌𝑡−1 −⋯− 𝛿𝑟𝑌𝑡−𝑟 = 𝜔0𝑋𝑡−𝑏 −𝜔1𝑋𝑡−𝑏−1 −⋯−𝜔𝑠𝑋𝑡−𝑏−𝑠 +𝑁𝑡 
 
OR 
 

𝑌𝑡 = 𝛿
−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡 

 
WHERE THE MODEL ERROR TERM, Nt, IS INDEPENDENT OF THE INPUT, Xt.  IT MAY 
BE FURTHER ASSUMED THAT THE MODEL ERROR TERM (OR NOISE) MAY BE 
REPRESENTED BY AN ARIMA PROCESS: 
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𝑁𝑡 = 𝜑

−1(𝐵)𝜃(𝐵)𝑎𝑡 
 
WHERE at IS A WHITE NOISE SEQUENCE. 
 
IN GENERAL, THE INPUT Xt MAY BE ANY SEQUENCE OF NUMBERS, E.G., LEVELS IN 
A DESIGNED EXPERIMENT, OR A SINE WAVE.  FOR THIS PRESENTATION, WE SHALL 
ASSUME, UNLESS OTHERWISE STATED, THAT THE INPUT Xt IS A STOCHASTIC 
PROCESS. 
 
THE OPERATOR 
 

𝑣(𝐵) = 𝛿−1(𝐵)𝜔(𝐵) = (𝑣0 + 𝑣1𝐵 + 𝑣2𝐵
2 +⋯) 

 
IS CALLED THE TRANSFER FUNCTION OF THE PROCESS.  THE WEIGHTS ν0, ν1, … 
ARE CALLED THE IMPULSE RESPONSE FUNCTION OF THE PROCESS. 
 
NOTE THAT IT IS NOT REASONABLE TO PARAMETERIZE THE PROCESS IN TERMS OF 
THE ν’s.  IN GENERAL, THAT WOULD BE A VERY NON-PARSIMONIOUS 
REPRESENTATION.  FOR MANY PROCESSES THAT ARE REPRESENTED BY A SMALL 
NUMBER OF PARAMETERS (φs AND θs), THE ν’s ARE FUNCTIONALLY RELATED.  
ESTIMATES OF A LARGE NUMBER OF FUNCTIONALLY RELATED PARAMETERS 
(CONSIDERED FUNCTIONALLY INDEPENDENT) WOULD BE INEFFICIENT AND 
UNSTABLE. 
 
IF THE INPUT Xt IS HELD INDEFINITELY AT THE VALUE OF ONE, Yt EVENTUALLY 
ATTAINS THE VALUE 
 

𝑔 =
𝜔0 −𝜔1 −⋯−𝜔𝑠
1 − 𝛿1 −⋯− 𝛿𝑟

 

 
WHICH IS CALLED THE STEADY-STATE GAIN OF THE PROCESS. 
 
FOR STABILITY OF THE PROCESS, IT IS REQUIRED THAT THE ROOTS OF THE 
POLYNOMIAL δ(B) = 0 LIE OUTSIDE THE UNIT CIRCLE.  (THIS IS EQUIVALENT TO 
REQUIRING THAT THE SERIES v(B) CONVERGE FOR |B|≤1.)  WE SHALL ASSUME 
THAT THIS CONDITION HOLDS. 
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FEATURES OF TRANSFER FUNCTION MODELS. 

 
IMPULSE RESPONSE AND STEP RESPONSE FUNCTIONS 
 
JUST AS ARIMA PROCESSES WERE CHARACTERIZED BY THEIR AUTOCORRELATION 
AND PARTIAL AUTOCORRELATION FUNCTIONS, TRANSFER FUNCTIONS ARE 
CHARACTERIZED BY THEIR RESPONSE TO IMPULSE AND STEP INPUTS. 
 
AN IMPULSE INPUT IS DEFINED AS AN INPUT X0 = 1 and Xt = 0 FOR t ≠ 0.  THE 
RESPONSES TO THIS INPUT ARE GIVEN BY THE IMPULSE RESPONSE FUNCTION. 
 
A STEP INPUT IS DEFINED AS AN INPUT OF Xt = 1 IF t ≥ 0 AND Xt =0 IF t < 0.  THE 
RESPONSE OF THE SYSTEM TO A STEP INPUT IS CALLED THE STEP RESPONSE 
FUNCTION. 
 
FOR A SPECIFIED (TRUE, THEORETICAL, POPULATION) MODEL, THE IMPULSE 
RESPONSE FUNCTION AND THE STEP RESPONSE FUNCTIONS MAY BE DERIVED. 
 
[INSERT EXAMPLE OF IMPULSE RESPONSE FUNCTION AND STEP RESPONSE 
FUNCTION.] 
 
CROSS-COVARIANCE AND CROSS-CORRELATION FUNCTIONS 
 
A STATIONARY UNIVARIATE TIME SERIES IS CHARACTERIZED BY THE MEAN, 
VARIANCE, AND AUTOCOVARIANCE (OR AUTOCORRELATION) FUNCTIONS.  
SIMILARLY, STATIONARY MULTIVARIATE TIME SERIES (VECTOR STOCHASTIC 
PROCESSES) ARE CHARACTERIZED BY THE MEANS, VARIANCES AND COVARIANCES 
OF THE COMPONENT RANDOM VARIABLES.  (THE TERM “COMPONENT” REFERS 
TO ONE OF THE COMPONENTS OF THE MULTIVARIATE RESPONSE VECTOR.) 
 
FOR EASE OF DISCUSSION, WE SHALL RESTRICT DISCUSSION TO THE BIVARIATE 
CASE, IN WHICH THERE IS A SINGLE EXOGENOUS VARIATE, Xt, AND A SINGLE 
RESPONSE (OUTPUT) VARIABLE, Yt.  (RECALL THAT WE ARE ASSUMING, UNLESS 
OTHERWISE STATED, THAT Xt IS A STOCHASTIC PROCESS.)  WE SHALL ASSUME 
THAT THESE PROCESSES ARE STATIONARY.  IN THIS CASE, THE (STATIONARY) 
BIVARIATE TIME SERIES IS CHARACTERIZED BY THE MEANS µx AND µy, VARIANCES 
σ2

x AND σ2
y, THE COVARIANCE FUNCTION DEFINED BY 
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𝛾𝑥𝑥(𝑘) = 𝐸[(𝑥𝑡 − 𝜇𝑥)(𝑥𝑡+𝑘 − 𝜇𝑥) = 𝐸[(𝑥𝑡 − 𝜇𝑥)(𝑥𝑡−𝑘 − 𝜇𝑥) 

𝛾𝑦𝑦(𝑘) = 𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑦𝑡+𝑘 − 𝜇𝑦) = 𝐸[(𝑦 − 𝜇𝑦)(𝑦𝑡−𝑘 − 𝜇𝑦) 

 
AND THE CROSS-COVARIANCE FUNCTIONS DEFINED BY 
 

𝛾𝑥𝑦(𝑘) = 𝐸[(𝑥𝑡 − 𝜇𝑥)(𝑦𝑡+𝑘 − 𝜇𝑦)]⁡⁡𝑘 = 0,1,2,… 

𝛾𝑦𝑥(𝑘) = 𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑥𝑡+𝑘 − 𝜇𝑥)]⁡⁡𝑘 = 0,1,2,…. 

 
FOR A STATIONARY SERIES, THE CROSS-COVARIANCE FUNCTIONS ARE THE SAME 
FOR ALL t. 
 
IN GENERAL, 𝛾𝑥𝑦(𝑘) IS NOT EQUAL TO 𝛾𝑦𝑥(𝑘). 

 
SINCE 
 

𝛾𝑥𝑦(𝑘) = 𝐸[(𝑥𝑡−𝑘 − 𝜇𝑥)(𝑦𝑡 − 𝜇𝑦)] = ⁡𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑥𝑡−𝑘 − 𝜇𝑥)] = 𝛾𝑦𝑥(−𝑘), 

 
IT SUFFICES TO DEFINE JUST ONE CROSS-COVARIANCE FUNCTION 𝛾𝑥𝑦(𝑘) =

𝑐𝑜𝑣(𝑥𝑡 , 𝑦𝑡+𝑘) FOR k = 0, ±1,±2,…. 
 
THE QUANTITY 
 

𝜌𝑥𝑦(𝑘) =
𝛾𝑥𝑦(𝑘)

𝜎𝑥𝜎𝑦
⁡⁡𝑘 = 0,±1,±2,… 

 
IS CALLED THE CROSS-CORRELATION COEFFICIENT AT LAG k, AND THE FUNCTION 
 

𝜌𝑥𝑦(𝑘)⁡⁡𝑘 = 0,±1,±2,… 

 
IS CALLED THE CROSS-CORRELATION FUNCTION (CCF) OF THE STATIONARY 
BIVARIATE PROCESS. 
 
AS MENTIONED, IT IS ASSUMED IN THIS SECTION THAT THE TWO SERIES (Xt AND 
Yt) ARE STATIONARY.  IF THE TWO SERIES ARE NOT STATIONARY, THERE ARE TWO 
ALTERNATIVE WAYS OF TRANSFORMING TO STATIONARITY.  THE FIRST IS TO 
APPLY DIFFERENCING TO EACH SERIES, AS WAS DONE IN THE CASE OF A SINGLE 
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TIME SERIES.  A SECOND POSSIBILITY IS THAT A LINEAR COMBINATION OF THE 
COMPONENT RANDOM VARIABLES MAY BE OF A LOWER ORDER OF INTEGRATION 
THAN THE ORIGINAL SERIES (I.E., LESS DIFFERENCING IS REQUIRED TO ACHIEVE 
STATIONARITY), SO THAT LESS DIFFERENCING IS REQUIRED TO TRANSFORM THAT 
COMBINATION TO STATIONARITY THAN IS REQUIRED FOR THE ORIGINAL SERIES.  
IF THIS HAPPENS, THE VARIABLES ARE SAID TO BE COINTEGRATED.  THAT 
POSSIBILITY IS UNLIKELY IN THE CASE IN WHICH THE EXPLANATORY VARIABLES 
ARE EXOGENOUS, AND SO IT WILL NOT BE ADDRESSED IN THIS SECTION.   THE 
ISSUE OF COINTEGRATION IS ADDRESSED IN THE SECTION DEALING WITH 
MULTIVARIATE VARIABLES THAT ARE NOT EXOGENOUS.  FOR THIS SECTION, IT 
WILL BE ASSUMED THAT THE VARIABLES ARE NOT COINTEGRATED.  IN THIS CASE, 
IF THEY ARE NONSTATIONARY, THEY ARE TRANSFORMED TO STATIONARITY BY 
DIFFERENCING.  IF DIFFERENCING IS DONE, THEN ZERO-ROOT FACTORS ARE 
ADDED TO THE MODEL FORMULA GIVEN ABOVE. 
 
A POTENTIAL PROBLEM WITH DIFFERENCING IN THE CASE OF A MODEL WITH 
EXPLANATORY VARIABLES IS THAT IT REMOVES INFORMATION ABOUT VARIABLE 
LEVELS.  IF THE RELATIONSHIP BETWEEN THE VARIABLES INVOLVES THE LEVELS 
OF THE VARIABLES, THEN DIFFERENCING WOULD RESULT IN A MISSPECIFIED 
MODEL.  (AS AN EXAMPLE, CONSIDER THE EFFECT OF RAINFALL AMOUNT ON 
CROP YIELD.  THE CROP YIELD DEPENDS ON THE CUMULATIVE RAINFALL 
AMOUNT, NOT ON SHORT-TERM FLUCTUATIONS.  RAINFALL AND CUMULATIVE 
RAINFALL ARE NONSTATIONARY.  IF DIFFERENCING WERE APPLIED TO ACHIEVE 
STATIONARITY, INFORMATION ABOUT THE RELATIONSHIP OF YIELD TO RAINFALL 
AMOUNT WOULD BE LOST.) 
 
ESTIMATION OF THE CROSS-COVARIANCE AND CROSS-CORRELATION FUNCTIONS 
 
LET US ASSUME THAT THE TWO SERIES (Xt AND Yt) ARE STATIONARY (OR THAT 
DIFFERENCING HAS BEEN APPLIED TO ACHIEVE STATIONARITY).  AN ESTIMATE OF 
THE CROSS-COVARIANCE COEFFICIENT AT LAG k IS 
 

𝑐𝑥𝑦(𝑘) =

{
 

 
1

𝑛
∑ (𝑥𝑡 − 𝑥̅)(𝑦𝑡+𝑘 − 𝑦̅)⁡⁡𝑘 = 0,1,2, …

𝑛−𝑘

𝑡=1

1

𝑛
∑ (𝑦𝑡 − 𝑦̅)(𝑥𝑡−𝑘 − 𝑥̅

𝑛+𝑘

𝑡=1
)⁡⁡𝑘 = 0,−1,−2,…

⁡⁡ 
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WHERE 𝑥̅ AND 𝑦̅   DENOTE THE MEANS OF THE xt AND yt SERIES.  THE ESTIMATE 
rxy(k) OF THE CROSS-CORRELATION COEFFICIENT ρxy(k) AT LAG k ARE OBTAINED 
BY SUBSTITUTING 𝑐𝑥𝑦(𝑘) FOR 𝛾𝑥𝑦(𝑘), sx

2 = cxx(0) for σx
2, and sy

2 = cyy(0) for σy
2 IN 

THE EXPRESSION FOR 𝜌𝑥𝑦(𝑘).  THIS YIELDS: 

 

𝑟𝑥𝑦(𝑘) =
𝑐𝑥𝑦(𝑘)

𝑠𝑥𝑠𝑦
⁡𝑘 = 0,±1,±2,….⁡ 

 
BJRL DISCUSS THE BEHAVIOR OF THE CROSS-CORRELATION FUNCTIONS AS A 
FUNCTION OF THE MODEL STRUCTURAL PARAMETERS (r, s, and b).  THIS 
BEHAVIOR MAY BE USED AS A GUIDE IN SUGGESTING A MODEL STRUCTURE THAT 
MAY REPRESENT THE UNDERLYING PROCESS WELL. 
 
FOR A STATIONARY PROCESS, THE AUTOCORRELATION AND CROSS-CORRELATION 
FUNCTIONS DIE OUT QUICKLY.  IF THE OBSERVED DATA EXHIBIT NONSTATIONARY 
BEHAVIOR, THE SERIES ARE TRANSFORMED BY DIFFERENCING TO ACHIEVE 
STATIONARITY.  (IT IS ASSUMED HERE THAT THE SERIES ARE NOT 
COINTEGRATED.) 
 

IDENTIFICATION OF TRANSFER-FUNCTION MODELS, USING THE CROSS-

CORRELATION FUNCTION; PREWHITENING 

 
THE COVARIANCES 𝑐𝑜𝑣[𝑟𝑥𝑦(𝑘), 𝑟𝑥𝑦(𝑘 + ℓ)] OF THE ESTIMATES 𝑟𝑥𝑦(𝑘) DEPEND 

ON THE CROSS CORRELATIONS 𝜌𝑥𝑦(𝑘), AND IF THESE ARE SUBSTANTIAL, THEN 

THE COVARIANCES ARE LARGE.  FOR THIS REASON, EXAMINATION OF THE 
ESTIMATED CROSS-CORRELATION FUNCTION OF THE OUTPUT (yt) AND INPUT (xt) 
SERIES IS NOT VERY HELPFUL IN ASSISTING IDENTIFICATION OF A USEFUL MODEL 
REPRESENTATION. 
 
EVEN UNDER THE HYPOTHESIS THAT THE TWO PROCESSES HAVE ZERO CROSS-
CORRELATION, THE COVARIANCES ARE SUBSTANTIAL.  IF THE TWO PROCESSES 
HAVE ZERO CROSS-CORRELATION AND ONE OF THEM IS A WHITE NOISE PROCESS, 
HOWEVER, THEN THE AUTOCORRELATION FUNCTION OF THE ESTIMATED CROSS 
CORRELATIONS IS THE SAME AS THE AUTOCORRELATION FUNCTION OF THE 
OUTPUT yk. 
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IN THIS CASE, EXAMINATION OF THE CROSS-CORRELATION FUNCTION OF THE 
MODEL RESIDUALS CAN BE A USEFUL INDICATOR OF THE GOODNESS OF FIT OF A 
TENTATIVE MODEL.  THIS FACT PROVIDES A USEFUL MEANS OF TESTING THE 
ADEQUACY OF A FITTED BIVARIATE TRANSFER FUNCTION MODEL. 
 
WE ASSUME THAT THE PROCESS MAY BE REPRESENTED BY THE FOLLOWING 
TRANSFER-FUNCTION MODEL: 
 

𝑌𝑡 = 𝛿
−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡 

 
WHERE THE NOISE PROCESS Nt MAY BE REPRESENTED BY AN ARIMA PROCESS 
THAT IS STOCHASTICALLY INDEPENDENT OF Xt. 
 
AFTER DIFFERENCING (TO ACHIEVE STATIONARITY OF THE Yt SERIES), THE 
FOLLOWING MODEL IS ASSUMED: 
 

𝑦𝑡 = 𝛿
−1(𝐵)𝜔(𝐵)𝑥𝑡−𝑏 + 𝑛𝑡 . 

 
FOR SIMPLICITY, LET US DENOTE THE OPERATOR 𝛿−1(𝐵)𝜔(𝐵) BY 𝑣(𝐵). 
 
LET US CONSIDER THE CASE IN WHICH THE Xt SERIES MAY BE ADEQUATELY 
REPRESENTED BY THE FOLLOWING MODEL: 
 

𝜃𝑥
−1(𝐵)𝜙𝑥(𝐵)𝑥𝑡 = 𝛼𝑡 

 
WHERE αt IS A WHITE NOISE PROCESS. 
 
LET US APPLY THE TRANSFORMATION OF THE MODEL FOR xt TO THE OUTPUT 
SERIES yt: 
 

𝛽𝑡 = 𝜃𝑥
−1(𝐵)𝜙𝑥(𝐵)𝑦𝑡 . 

 
THE THUS-TRANSFORMED VARIATE 𝛽𝑡 IS CALLED A PREWHITENED SERIES.  (THIS 
TERM IS A MISNOMVER AND IS MISLEADING; APPLYING THE TRANSFORMATION 
TO THE Xt SERIES WOULD “WHITEN” IT, BUT APPLYING THE TRANSFORMATION TO 
THE OUTPUT SERIES Yt DOES NOT “WHITEN” IT.)  THE MODEL FOR THIS 
TRANFORMED VARIABLE IS 
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𝛽𝑡 = 𝑣(𝐵)𝛼𝑡 + 𝜀𝑡 
 
WHERE 
 

𝜀𝑡 = 𝜃𝑥
−1(𝐵)𝜙𝑥(𝐵)𝑛𝑡. 

 
MULTIPLYING BOTH SIDES OF THE TRANSFORMED MODEL 
 

𝛽𝑡 = 𝜃𝑥
−1(𝐵)𝜙𝑥(𝐵)𝑦𝑡 

 
BY αt AND TAKING EXPECTATIONS YIELDS 
 

𝛾𝛼𝛽(𝑘) = 𝑣𝑘𝜎𝛼
2⁡⁡⁡𝑘 = 0,1,2,… 

 
WHERE 𝛾𝛼𝛽(𝑘) = 𝐸(𝛼𝑡−𝑘𝛽𝑡) IS THE CROSS-COVARIANCE FUNCTION OF THE 

SERIES αt AND βt.  IN TERMS OF THE CROSS-CORRELATION FUNCTION, THIS IS 
 

𝑣𝑘 =
𝜌𝛼𝛽(𝑘)𝜎𝛽

𝜎𝛼
⁡⁡⁡𝑘 = 0,1,2, …. 

 
THAT IS, THE ESTIMATED CROSS-CORRELATION FUNCTION OF THE PREWHITENED 
Yt AND Xt SERIES IS THE TRANSFER FUNCTION FOR THE TRANSFORMED MODEL. 
 
THE CROSS-CORRELATION FUNCTION 𝜌𝛼𝛽(𝑘) IS UNKNOWN, AND 𝑣𝑘 IS 

ESTIMATED BY: 
 

𝑣̂𝑘 =
𝑟𝛼𝛽(𝑘)𝑠𝛽

𝑠𝛼
⁡⁡⁡𝑘 = 0,1,2,…. 

 
UNDER THE ASSUMPTION THAT αt AND βt ARE NOT CROSS-CORRELATED, THE 
VARIANCE OF THE CROSS CORRELATIONS IS 
 

𝑣𝑎𝑟 (𝑟𝛼𝛽(𝑘)) ≅
1

𝑛 − 𝑘
. 
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THE PRECEDING RESULTS SHOW THAT BY PREWHITENING, THE CROSS-
CORRELATION FUNCTION IS A USEFUL GUIDE TO SUGGESTING THE FORM OF THE 
POLYNOMIAL v(B), AND HENCE TO SUGGESTING FORMS FOR δ(B) AND ω(B). 
 

ESTIMATION OF PARAMETERS OF TRANSFER-FUNCTION MODELS  

 
THE STANDARD PROCEDURE FOR ESTIMATING THE PARAMETERS OF A TRANSFER-
FUNCTION MODEL ARE DESRIBED IN DETAIL IN THE TIMES MANUAL AND IN THE 
BJRL BOOK. 
 
IT IS EMPHASIZED THAT A CRITICAL ASSUMPTION IN THE MODEL IS THAT THE 
EXOGENOUS VARIABLE AND THE MODEL ERROR TERM ARE UNCORRELATED 
(THAT IS, EXOGENOUS).  IT THIS ASSUMPTION DOES NOT HOLD, THEN THE 
ESTIMATES MAY BE BIASED AND INCONSISTENT. 
 
IN APPLICATIONS IN WHICH THE INPUT VARIABLE xt IS CONTROLLABLE, THIS 
ASSUMPTION MAY BE GUARANTEED BY INDEPENDENTLY GENERATING THE xt 
SERIES.  IN OTHER SITUATIONS, IT MAY BE OBVIOUS THAT THE EXOGENOUS 
VARIATE IS INDEPENDENT (E.G., WEATHER TEMPERATURE OR RAINFALL 
AMOUNTS). 
 

SPURIOUS CORRELATIONS 

 
THE PRECEDING DISCUSSION ADDRESSES THE ISSUE OF MODEL IDENTIFICATION 
UNDER THE ASSUMPTION THAT THE DATA ARE TRANSFORMED TO STATIONARY 
VARIATES.  THE DESCRIBED PROCEDURES CANNOT BE USEFULLY APPLIED TO 
NONSTATIONARY DATA.  IF THE VARIABLES Yt AND Xt ARE NONSTATIONARY, THE 
LEAST-SQUARES ESTIMATES OF THE TRANSFER-FUNCTION PARAMETERS MAY BE 
INCONSISTENT – THAT IS, NO MATTER HOW LARGE THE SAMPLE, THE ESTIMATES 
DO NOT CONVERGE TO THE CORRECT VALUES.  THIS SITUATION MAY OCCUR 
EVEN IF THE SERIES ARE UNRELATED.  THIS SITUATION HOLDS, FOR EXAMPLE, IF 
THE MODEL IS 
 

𝑦𝑡 = 𝛼 + 𝛾𝑥𝑡 + 𝑢𝑡 
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WHERE yt, xt, AND  𝑦𝑡 − 𝛼 − 𝛾𝑥𝑡 ARE NONSTATIONARY.  THE PROBLEM IS THAT 
THERE ARE NO VALUES OF α AND γ FOR WHICH THE ERROR TERM ut IS 
STATIONARY.  HENCE, THE REQUIREMENT FOR LEAST-SQUARES ESTIMATION 
THAT THE MODEL ERROR TERM BE UNCORRELATED (OR, AT LEAST, STATIONARY 
AND OF KNOWN COVARIANCE STRUCTURE) AND UNCORRELATED WITH THE 
MODEL EXPLANATORY VARIABLES IS NOT SATISFIED. 
 
THE DIFFICULTY IN ESTIMATING MODEL PARAMETERS WHEN THE TWO 
VARIABLES ARE NONSTATIONARY IS CALLED THE PROBLEM OF SPURIOUS 
CORRELATION OR SPURIOUS REGRESSION. 
 
THE PROBLEM OF SPURIOUS CORRELATION / SPURIOUS REGRESSION HAS BEEN 
RECOGNIZED FOR A LONG TIME, AND WAS FIRST DISCUSSED IN DETAIL BY YULE IN 
1926.  THIS PROBLEM ARISES WITH HOMOGENEOUS NONSTATIONARY SERIES 
SINCE THE LEVEL WANDERS ABOUT.  FOR A FINITE SAMPLE THE SERIES MAY 
EXHIBIT TRENDS, WHICH ARE NOT REAL, BUT JUST STATISTICAL ARTIFACTS.  IN 
THIS SITUATION, REGRESSING ONE NONSTATIONARY SERIES ON ANOTHER WILL 
APPEAR (EVEN IF BOTH SERIES ARE TOTALLY UNRELATED TO EACH OTHER) TO 
EXHIBIT A RELATIONSHIP THAT APPEARS HIGHLY STATISTICALLY SIGNIFICANT IF 
STANDARD t AND F TESTS ARE USED TO ASSESS SIGNIFICANCE, BUT IN REALITY IS 
OF NO SIGNIFICANCE WHATEVER.  (THE REASON FOR THIS SITUATION IS THAT 
THE STANDARD TESTS ASSUME THAT THE OBSERVATIONS ARE INDEPENDENT.  IF 
THEY ARE NONSTATIONARY, THEY ARE NOT INDEPENDENT.  FOR A 
NONSTATIONARY TIME SERIES, NEARBY OBSERVATIONS ARE USUALLY HIGHLY 
CORRELATED, SO THAT THE AMOUNT OF INFORMATION IN THE SAMPLE IS MUCH 
LESS THAN FOR A RANDOM SAMPLE OF THE SAME NUMBER OF OBSERVATIONS.) 
 
THERE ARE THREE APPROACHES TO AVOID THE PROBLEM OF SPURIOUS 
REGRESSION.  (SEE HAMILTON OP. CIT. FOR DISCUSSION.)   THE FIRST IS TO 
INCLUDE LAGGED VALUES FOR BOTH THE DEPENDENT AND INDEPENDENT 
VARIABLES IN THE MODEL.  IN THIS CASE THE MODEL BECOMES 
 

𝑦𝑡 = 𝛼 + 𝜙𝑦𝑡−1 + 𝛾𝑥𝑡 + 𝛿𝑥𝑡−1 + 𝑢𝑡 
 
THIS MODEL AVOIDS THE PROBLEM BECAUSE THERE EXIST VALUES OF φ, γ AND δ 
(E.G., φ = 1, γ = δ = 0) FOR WHICH THE ERROR TERM IS STATIONARY. 
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THE SECOND APPROACH TO AVOIDING THE PROBLEM OF SPURIOUS REGRESSION 
IS TO TRANSFORM TO STATIONARITY BY DIFFERENCING.  SUPPOSE THAT THE 
VARIABLES ∇yt AND ∇xt ARE STATIONARY (WHERE ∇= 1 − B).  THEN, AFTER 
TRANSFORMING THE ORIGINAL SERIES, THE MODEL BECOMES 
 

∇𝑦𝑡 = 𝛼 + 𝛾∇𝑥𝑡 + 𝑢𝑡 . 
 
IN THIS CASE ALL MODEL VARIABLES ∇yt, ∇xt AND ut ARE STATIONARY, AND THE 
PROBLEM OF SPURIOUS REGRESSION DOES NOT EXIST. 
 
THE THIRD APPROACH IS TO ESTIMATE THE MODEL WITH COCHRANE-ORCUTT 
ADJUSTMENT OF THE RESIDUALS (I.E., REPRESENTING THE MODEL ERROR TERMS 
AS A FIRST-ORDER AR PROCESS). 
 
TO AVOID THE PROBLEM OF SPURIOUS REGRESSION, IT IS A STANDARD 
PROCEDURE TO TRANSFORM THE SERIES TO STATIONARITY BY DIFFERENCING.  
WHILE THIS APPROACH IS OFTEN APPROPRIATE, IT IS TOTALLY INAPPROPRIATE IN 
TWO SITUATIONS.  FIRST, IF THE SERIES ARE IN FACT STATIONARY (E.G., THEY ARE 
REPRESENTED BY AR MODELS FOR WHICH THE ROOTS OF THE AR POLYNOMIAL 
ARE NEAR THE UNIT CIRCLE BUT ACTUALLY OUTSIDE IT, SUCH AS AN AR MODEL 
WITH φ1 = .9).  IN THIS CASE DIFFERENCING WILL RESULT IN A MISSPECIFIED 
MODEL. 
 
THE SECOND SITUATION IN WHICH DIFFERENCING OF SERIES IS INAPPROPRIATE IS 
THE FOLLOWING.  WE CONSIDER THE BIVARIATE CASE, IN WHICH THERE IS A 
SINGLE DEPENDENT VARIABLE yt AND A SINGLE EXPLANATORY VARIABLE xt.  
SUPPOSE THAT THE SERIES ARE NONSTATIONARY BUT CAN BE TRANSFORMED TO 
STATIONARITY BY DIFFERENCING d TIMES.  IN THIS CASE, THE SERIES ARE SAID TO 
BE INTEGRATED OF ORDER d.  FURTHER, SUPPOSE THAT THERE EXISTS A LINEAR 
COMBINATION OF yt AND xt THAT IS INTEGRATED OF ORDER LESS THAN d.  (FOR 
EXAMPLE, SUPPOSE THAT yt AND xt ARE NONSTATIONARY, BUT ∇yt, ∇xt AND yt – 
βxt ARE STATIONARY, FOR SOME VALUE OF β NOT EQUAL TO ONE IN 
MAGNITUDE.)  IN THIS CASE, THE SERIES ARE SAID TO BE COINTEGRATED.  IF 
DIFFERENCING IS APPLIED TO A COINTEGRATED PROCESS, THE MODEL WILL BE 
MISSPECIFIED.  THE ISSUE OF COINTEGRATION IS ADDRESSED IN THE NEXT 
SECTION, DEALING WITH GENERAL MULTIVARIATE MODELS (SINCE IT IS UNLIKELY 
TO ARISE IN UNIVARIATE MODELS HAVING EXOGENOUS REGRESSORS). 
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TESTS OF MODEL ADEQUACY 

 
THE ADEQUACY OF THE MODEL REPRESENTATION IS TESTED BY TESTING 
WHETHER THE MODEL RESIDUALS ARE WHITE NOISE, AND WHETHER THE CROSS-
CORRELATIONS OF THE PREWHITENED EXOGENOUS VARIABLE AND THE MODEL 
RESIDUALS IS ZERO. 
 
A KEY ISSUE IN TESTING THE ADEQUACY OF TRANSFER FUNCTION MODELS IS 
THAT THE VARIANCES / COVARIANCES OF THE MODEL RESIDUALS DEPEND ON 
THE PARAMETERS OF THE MODEL.  SEE BJRL FOR DETAILS. 
 

MEASURES OF MODEL EFFICIENCY 

 
THE EFFICIENCY OF THE MODEL REPRESENTATION IS ASSESSED BY MEANS OF THE 
AIC, BIC AND HQC CRITERIA (REDUNDANCY RECOGNIZED). 
 

FORECASTING 

 
FORECASTING WITH A TESTED TRANSFER-FUNCTION MODEL IS DONE IN A 
MANNER ANALOGOUS TO THAT DESCRIBED FOR UNIVARIATE MODELS 
CONTAINING NO EXOGENOUS VARIATES, BY DERIVING A RECURSIVE FORMULA 
FOR THE CURRENT VALUE OF yt FROM THE MODEL REPRESENTATION.  SEE BJRL 
pp. 461-469 FOR DETAILS (FOR THE CASE IN WHICH THE MODEL ERROR TERM 
(FOR Yt) IS INDEPENDENT OF THE INPUT, Xt). 
 
IN ORDER TO MAKE FORECASTS WITH A TRANSFER-FUNCTION MODEL, IT IS 
NECESSARY TO USE FORECASTS OF THE EXPLANATORY VARIABLE(S).  (IF THE 
EXPLANATORY VARIABLE IS A STOCHASTIC PROCESS, THESE FORECASTS MIGHT BE 
DETERMINED, FOR EXAMPLE, FROM AN ARIMA MODEL OF THE EXPLANATORY 
VARIABLE(S).)  THE AS DISCUSSED EARLIER, IN ORDER FOR THESE FORECASTS TO 
BE VALID, IT IS NECESSARY THAT STRONG EXOGENITY HOLD (THAT IS, THE 
OPTIMAL FORECASTS OF FUTURE VALUES OF Xt DEPEND ONLY ON PAST Xts, AND 
CANNOT BE IMPROVED BY KNOWLEDGE OF PAST Yts (SEE BJRL p. 463)). 
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PROCESS CONTROL; POLICY ANALYSIS 

 
IF THE EXOGENOUS VARIABLE CAN BE CONTROLLED, THEN THE SYSTEM OUTPUT 
MAY BE CONTROLED BY SETTING ITS VALUE TO MINIMIZE THE MEAN SQUARED 
DIFFERENCE BETWEEN THE SYSTEM OUTPUT AND THE DESIRED (TARGET) 
OUTPUT.  SEE BJRL pp. 559-615 FOR DETAILS. 
 
AS DISCUSSED EARLIER, IN ORDER TO PREDICT THE EFFECT OF MAKING CHANGES 
IN THE EXPLANATORY VARIABLES, SUPER EXOGENEITY MUST HOLD. 
 
TO USE A TRANSFER FUNCTION MODEL TO FORECAST A PROCESS THAT IS SIMPLY 
OBSERVED, NOT INTERFERED WITH, IT IS NECESSARY THAT THE MODEL BE 
DEVELOPED FROM DATA IN WHICH THE PROCESS IS SIMPLY OBSERVED, NOT 
INTERFERED WITH. 
 
TO USE A TRANSFER FUNCTION MODEL TO CONTROL A PROCESS (AS IN POLICY 
ANALYSIS), IT IS NECESSARY THAT THE MODEL BE DEVELOPED FROM DATA IN 
WHICH FORCED CHANGES WERE MADE IN THE EXPLANATORY (CONTROL) 
VARIABLE.  THIS ISSUE IS DISCUSSED ON PAGE 470 OF BJRL. 
 
THE TOPIC OF PROCESS CONTROL IS DISCUSSED AT LENGTH IN BJRL.  IN GENERAL, 
THE ATTEMPT IS TO ADJUST THE INPUT SO THAT THE OUTPUT COMES CLOSE TO A 
PARTICULAR VALUE, I.E., TO MINIMIZE THE MEAN-SQUARED-ERROR OF THE 
OUTPUT (RELATIVE TO A DESIRED TARGET VALUE).  THERE ARE DIFFERENT TYPES 
OF PROCESS CONTROL, SUCH AS FEEDBACK CONTROL, FEEDFORWARD CONTROL, 
AND FEEDFORWARD-FEEDBACK CONTROL.  SEE BJRL pp. 559-615 FOR A DETAILED 
DISCUSSION OF PROCESS CONTROL USING TRANSFER-FUNCTION MODELS. 
 
FOR SIMPLE CONTROL SCHEMES, THE DESIRED SETTING FOR THE INPUT CAN BE 
DETERMINED BY ALGEBRA.  IF IT IS DESIRED TO PLACE CONSTRAINTS ON THE 
INPUT, SUCH AS CONSTRAINTS ON ITS VARIANCE, THEN DIFFERENTIATION IS 
REQUIRED TO DETERMINE OPTIMAL INPUT.  BJRL PRESENT A SIMPLE EXAMPLE OF 
THIS ON pp. 600 – 609.  REINSEL (pp. 280 – 285) PRESENTS A GENERAL 
TREATMENT (“OPTIMAL FEEDBACK CONTROL IN ARMAX MODELS”).  THE FIELD OF 
OPTIMAL CONTROL IS SUBSTANTIAL, INVOLVING MULTISTAGE TECHNIQUES SUCH 
AS DYNAMIC PROGRAMMING.  IT IS MORE CONVENIENTLY REPRESENTED IN 
STATE-SPACE REPRESENATIONS OF PROCESSES.  THESE TOPICS ARE NOT 
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ADDRESSED IN THIS PRESENTATION.  (EVEN FOR SIMPLE MODELS, SUCH THE 
INPUT THAT PRODUCES THE MINIMUM MEAN-SQUARED-ERROR OF THE OUTPUT, 
DIFFICULTIES MAY BE ENCOUNTERED.  FOR EXAMPLE, THE OPTIMAL CONTROLLER 
MAY EXHIBIT OSCILLATORY “SAWTOOTH” BEHAVIOR.  SUCH BEHAVIOR WOULD 
BE TOTALLY UNACCEPTABLE IN A POLITICAL APPLICATION INVOLVING THE 
SETTING OF INTEREST RATES, SINCE IT WOULD APPEAR THAT THE GOVERNMENT 
HAD NO IDEA WHAT IT WAS DOING.) 
 

IMPULSE RESPONSE FUNCTION 

 
THE IMPULSE RESPONSE FUNCTION AND STEP RESPONSE FUNCTIONS ARE 
ESTIMATED BY SUBSTITUTING THE ESTIMATED VALUES OF THE MODEL 
PARAMETERS IN THE FORMULA FOR THESE FUNCTIONS, AS FUNCTION OF THE 
MODEL PARAMETERS. 
 

PREDICTION (FORECAST ERROR) VARIANCE DECOMPOSITION 

 
IT IS OF INTEREST TO DECOMPOSE THE FORECAST ERROR VARIANCE INTO A 
PORTION ASSOCIATED WITH DEPENDENCE OF THE MODEL OUTPUT ON THE 
EXOGENOUS VARIABLE, AND THAT ASSOCIATED WITH THE MODEL ERROR TERM.  
THIS WILL BE DISCUSSED IN THE NEXT SECTION, DEALING WITH THE GENERAL 
MULTIVARIATE MODEL. 
 

DETAILED EXAMPLE OF DEVELOPMENT AND APPLICATION OF A BIVARIATE 

TRANSFER-FUNCTION MODEL 

 
A DETAILED DESCRIPTION OF THE PROCESS FOR IDENTIFYING, ESTIMATING AND 
APPLYING A BIVARIATE TRANSFER-FUNCTION MODEL IS PRESENTED IN BJRL (pp. 
428 – 461 FOR FORECASTING AND pp. 559-615 FOR PROCESS CONTROL).  THIS 
MATERIAL WILL NOT BE DISCUSSED IN THIS PRESENTATION. 

4. GENERAL MULTIVARIATE TIME SERIES ANALYSIS 
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SIMILARITIES AND DIFFERENCES OF MULTIVARIATE TIME SERIES MODELS 

AND UNIVARIATE TIME SERIES MODELS (SINGLE VARIABLE AND MULTIPLE 

VARIABLE) 

 
AS A POINT OF DEPARTURE FOR THIS SECTION ON GENERAL MULTIVARIATE TIME 
SERIES, WE SHALL START FROM THE UNIVARIATE TIME SERIES MODEL DISCUSSED 
IN THE PRECEDING SECTION. 
 
REFERENCES ON UNIVARIATE TIME SERIES ANALYSIS WERE PROVIDED EARLIER.  
REFERENCES ON MULTIVARIATE TIME SERIES ANALYSIS INCLUDE: 
 

BOX, GEORGE E. P., GWILYM M. JENKINS, GREGORY C. REINSEL AND GRETA 
M. LYUNG, TIME SERIES ANALYSIS, FORECASTING AND CONTROL, 5TH ED., 
WILEY, 2016.  (THIS REFERENCE WILL BE DENOTED AS BJRL.) 
 
LÜTKEPOHL, HELMUT, NEW INTRODUCTION TO MULTIPLE TIME SERIES 
ANALYSIS, SPRINGER, 2006 
 
TSAY, RUEY S., MULTIVARIATE TIME SERIES ANALYSIS WITH R AND 
FINANCIAL APPLICATIONS, WILEY, 2014 
 
TSAY, RUEY S., ANALYSIS OF FINANCIAL TIME SERIES, 3RD ED., WILEY, 2010 
 
HAMILTON, JAMES D., TIME SERIES ANALYSIS, PRINCETON UNIVERSITY 
PRESS, 1994 
 
REINSEL, GREGORY C., ELEMENTS OF MULTIVARIATE TIME SERIES ANALYSIS, 
2ND ED., SPRINGER, 1997 
 
LÜTKEPOHL, HELMUT AND MARKUS KRÄTZIG, APPLIED TIME SERIES 
ECONOMETRICS, CAMBRIDGE UNIVERSITY PRESS, 2004 
 
ZIVOT, ERIC AND JIAHUI WANG, MODERN FINANCIAL TIME SERIES WITH S-
PLUS 2ND ED., SPRINGER, 2006.  POSTED AT INTERNET WEBSITE 
http://faculty.washington.edu/ezivot/econ589/manual.pdf . 
 

http://faculty.washington.edu/ezivot/econ589/manual.pdf
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AMISANO, GIANNI AND CARLO GIANNINI, TOPICS IN STRUCTURAL VAR 
ECONOMETRICS, 2ND ED., SPRINGER, 1997 
 
DURBIN, J. AND S. J. KOOPMAN, TIME SERIES ANALYSIS BY STATE SPACE 
METHODS, 2ND ED., OXFORD UNIVERSITY PRESS, 2012 
 
BANERJEE, ANINDYA, JUAN DOLADO, JOHN W. GALBRAITH AND DAVID F. 
HENDRY, CO-INTEGRATION, ERROR CORRECTION, AND THE ECONOMETRIC 
ANALYSIS OF NON-STATIONARY DATA, OXFORD UNIVERSITY PRESS, 1993 
 
JOHANSEN, SØREN, LIKELIHOOD-BASED INFERENCE IN COINTEGRATED 
VECTOR AUTOREGRESSIVE MODELS, OXFORD UNIVERSITY PRESS, 1995 
 

THE LEADING TEXT ON GENERAL CONTINUOUS NORMAL MULTIVARIATE 
STATISTICAL ANALYSIS (NOT FOCUSING ON TIME SERIES ANALYSIS) IS: 

 
ANDERSON, T. W., AN INTRODUCTION TO MULTIVARIATE STATISTICAL 
ANALYSIS, 3RD ED., WILEY, 2003 

 
THE DISCUSSION OF MULTIVARIATE TIME SERIES THAT IS PRESENTED IN BOX, 
JENKINS, REINSEL AND LJUNG (BJRL) IS COMPACT AND COMPREHENSIVE, AND 
WILL BE FOLLOWED IN THIS PRESENTATION.  FOR MORE DETAILED DISCUSSION, 
SEE THE TEXTS BY LÜTKEPOHL, RUEY AND HAMILTON. 
 

MULTIVARIATE TIME SERIES DESCRIPTORS 

 
THE FUNDAMENTAL CONCEPTS OF MULTIVARIATE TIME SERIES, SUCH AS THE 
CONCEPT OF STATIONARITY AND THE DESCRIPTORS OF STATIONARY TIME SERIES, 
ARE ANALOGOUS TO THOSE FOR THE UNIVARIATE (SCALAR) CASE ALREADY 
DISCUSSED. 
 
A RANDOM VECTOR Zt = (Z1t,…,Zkt)’, t = 0, ±1, ±2,… INDEXED ON TIME (t) IS A k-
DIMENSIONAL TIME SERIES VECTOR (OR VECTOR STOCHASTIC PROCESS, OR 
VECTOR PROCESS).  EACH OF THE COMPONENT RANDOM VARIABLE Zit OF Zt IS A 
UNIVARIATE TIME SERIES. 
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THE VECTOR PROCESS Zt IS STRICTLY STATIONARY IF THE PROBABILITY 
DISTRIBUTIONS OF THE RANDOM VECTORS (Zt1, Zt2, …, Ztm) AND (Zt1+h, Zt2+h, …, 
Ztm+h) ARE THE SAME FOR ANY SELECTION OF TIMES (t1, t2,,…tm), ALL m, AND ALL 
LAGS OR LEADS h = 0, ±1, ±2,…. 
 
FOR A STRICTLY STATIONARY PROCESS, THE MEAN (IF IT EXISTS) IS CONSTANT, 
E(Zt) = µ = (µ1, …, µk)’ AND THE COVARIANCE MATRIX (IF IT EXISTS) IS CONSTANT, 
E[(Zt - µ)(Zt - µ)’] = ΣZ. 
 
THE k BY k MATRIX OF CROSS COVARIANCES AT LAG h (IF IT EXISTS) IS DEFINED AS 
 

Γ(ℎ) = 𝐸[(𝒁𝑡 − 𝝁)(𝒁𝑡+ℎ − 𝝁)
′] = [

𝛾11(ℎ) ⋯ 𝛾1𝑘(ℎ)
⋮ ⋱ ⋮

𝛾𝑘1(ℎ) ⋯ 𝛾𝑘𝑘(ℎ)
]. 

 
For h = 0, ±1, ±2,….  THE CROSS-CORRELATIONS AT LAG h ARE DEFINED AS 
 

𝜌𝑖𝑗(ℎ) = 𝑐𝑜𝑟𝑟(𝑧𝑖𝑡 , 𝑧𝑗,𝑡+ℎ) =
𝛾𝑖𝑗(ℎ)

(𝛾𝑖𝑖(0)𝛾𝑗𝑗(0))
1/2

 

 
WHERE 
 

𝛾𝑖𝑖(0) = 𝑣𝑎𝑟(𝑧𝑖𝑡). 
 
NOTE THAT 𝜌𝑖𝑗(ℎ) = 𝜌𝑖𝑗(−ℎ).  FOR i = j 𝜌𝑖𝑗(ℎ) DENOTES THE AUTOCORRELATION 

FUNCTION OF THE i-th SERIES Zit, AND FOR i ≠ j 𝜌𝑖𝑗(ℎ) DENOTES THE CROSS-

CORRELATION FUNCTION BETWEEN THE SERIES Zit AND Zjt. 
 
THE k BY k CROSS-CORRELATION MATRIX ρ(h) AT LAG h IS 
 

𝜌(ℎ) = 𝑉−1/2Γ(ℎ)𝑉−1/2 = {𝜌𝑖𝑗(ℎ)} 

 
FOR h = 0, ±1, ±2,…, WHERE 
 

𝑉−1/2 = 𝑑𝑖𝑎𝑔{𝛾11(0)
−1/2, … , 𝛾𝑘𝑘(0)

−1/2}. 

 
NOTE THAT Γ(h)’ = Γ(-h) AND ρ(h)’ = ρ(-h). 
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AS IN THE UNIVARIATE CASE, IT IS DIFFICULT TO ESTABLISH STRICT (STRONG) 
STATIONARITY, AND ATTENTION FOCUSES ON WEAK STATIONARITY, IN WHICH 
THE MEAN VECTOR AND COVARIANCE MATRIX DO NOT DEPEND ON t (ONLY ON 
h).  WEAK STATIONARITY IS ALSO CALLED SECOND-ORDER STATIONARITY OR 
COVARIANCE STATIONARITY. 
 
IN THE UNIVARIATE CASE, REPRESENTATIVE AUTOCORRELATION FUNCTIONS 
WERE DISPLAYED FOR VARIOUS CLASSES OF TIME SERIES (AUTOREGRESSIVE, 
MOVING AVERAGE, AUTOREGRESSIVE MOVING AVERAGE).  BECAUSE OF THE 
SUBTANTIALLY INCREASED COMPLEXITY OF MULTIVARIATE TIME SERIES, 
CHARACTERIZATION OF TIME SERIES BY THE CROSS-CORRELATION FUNCTION IS 
SUBSTANTIALLY MORE DIFFICULT.  THE EXAMINATION OF THE CROSS-
CORRELATION FUNCTION SHOULD INVOLVE EXAMINATION OF THE 
AUTOCORRELATION FUNCTION OF EACH COMPONENT SERIES, JUST AS WAS 
DONE IN THE CASE OF UNIVARIATE TIME SERIES ANALYSIS.  IT SHOULD ALSO 
INCLUDE EXAMINATION OF BIVARIATE CROSS-CORRELATION FUNCTIONS, AS 
DISCUSSED IN THE SECTION ON TRANSFER-FUNCTION MODELS. 
 
AS IN THE UNIVARIATE CASE, WE SHALL DESCRIBE SOME MAJOR STATIONARY 
MULTIVARIATE TIME SERIES MODELS.  THESE MODELS ARE ANALOGOUS TO 
THOSE DESCRIBED IN THE UNIVARIATE CASE, AND THEY WILL NOT BE DESCRIBED 
IN AS MUCH DETAIL.  BEFORE PROCEEDING WITH THE DESCRIPTION OF GENERAL 
MODELS, WE WILL DESCRIBE A VERY BASIC ONE, THE VECTOR WHITE NOISE 
PROCESS, WHICH IS A BUILDING BLOCK IN THE CONSTRUCTION OF MORE 
COMPLEX MODELS. 
 
IN THE UNIVARIATE CASE, WE INCLUDED SOME DISCUSSION OF THE POWER 
SPECTRUM AND THE SPECTRAL DENSITY FUNCTION.  THESE SAME CONCEPTS 
APPLY TO THE CASE OF MULTIVARIATE TIME SERIES, BUT WE SHALL OMIT 
DISCUSSION OF THEM IN THIS PRESENTATION.  SEE BJRL FOR DETAILS.  AN 
ADVANTAGE OF THE SPECTRAL METHODS IS THAT THEY DO NOT REQUIRE 
PREWHITENING OF THE INPUT. 
 
VECTOR WHITE NOISE PROCESS 
 



77 
 

A VECTOR WHITE NOISE PROCESS IS A SEQUENCE OF RANDOM VECTORS, …, 
a1,…,at,…, WHERE at = (a1t,…,akt)’, SUCH THAT E(at) = 0, E[ata’t] = Σ, AND E[ata’t+h] = 
0 FOR h ≠ 0.  THE COVARIANCE MATRICES ARE DENOTED AS: 
 

Γ(ℎ) = 𝐸[𝒂𝑡𝒂𝑡+ℎ
′ ] = {

Σ⁡𝑓𝑜𝑟⁡ℎ = 0
0⁡𝑓𝑜𝑟⁡ℎ ≠ 0

. 

 
THE WHITE NOISE PROCESS IS OF INTEREST PRIMARILY AS THE REPRESENTATION 
OF THE ERROR TERMS OF A MULTIVARIATE MODEL. 
 
SINCE THE WHITE NOISE SEQUENCES OF THIS SECTION ARE ALMOST ALWAYS 
VECTOR WHITE NOISE SEQUENCES, WE SHALL GENERALLY DROP THE DESCRIPTOR 
“VECTOR” FROM THE TERM, AND GENERALLY REFER TO A VECTOR WHITE NOISE 
SEQUENCE SIMPLY AS A WHITE NOISE SEQUENCE. 
 
WOLD’S REPRESENTATION OF A NONDETERMINISTIC STOCHASTIC PROCESS 
 
THE MULTIVARIATE VERSION OF WOLD’S THEOREM ASSERTS THAT IF Zt IS A 
NONDETERMINISTIC STATIONARY PROCESS WITH MEAN VECTOR µ, THEN Zt CAN 
BE REPRESENTED AS AN INFINITE VECTOR MOVING AVERAGE (MA) PROCESS: 
 

𝒁𝑡 = 𝝁 +∑ Ψ𝑗𝒂𝑡−𝑗 = 𝝁 +Ψ(𝐵)𝒂𝑡⁡Ψ0 = 𝐼
∞

𝑗=0
 

 

WHERE Ψ(𝐵) = ∑ Ψ𝑗𝐵
𝑗∞

𝑗=0  IS A k x k MATRIX IN THE BACKSHIFT OPERATOR B 

AND THE k x k MATRICES Ψj SATISFY ∑ ‖Ψ𝑗‖
2
< ∞∞

𝑗=0  AND at IS A VECTOR WHITE 

NOISE PROCESS DEFINED ABOVE. 
 
THE COVARIANCE MATRIX OF Zt IS GIVEN BY 
 

𝑐𝑜𝑣(𝒁𝑡) =∑ Ψ𝑗ΣΨ𝑗
′.

∞

𝑗=0
 

 
IN THE MOVING AVERAGE REPRESENTATION, THE COEFFICIENT MATRIX Ψi 
INDICATES THE RESPONSE OF THE OUTPUT VARIABLE Zt TO A UNIT CHANGE IN at-j, 
AND IS CALLED AN IMPULSE RESPONSE.  IN THE CASE OF A UNIVARIATE MODEL, 
THE ats WERE UNCORRELATED, AND EACH IMPULSE RESPONSE COULD BE VIEWED 
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INDEPENDENTLY OF THE OTHERS.  IN THE MULTIVARIATE CASE, THE SITUATION IS 
DIFFERENT.  THE INPUT at IS A VECTOR WHOSE COMPONENTS ARE CORRELATED.  
AS A RESULT, A CHANGE IN ONE COMPONENT OF THE ats IMPLIES A CHANGE IN 
THE OTHERS, AND IT IS NOT REASONABLE TO VIEW THE COEFFICIENT Ψj AS THE 
RESPONSE TO A UNIT CHANGE IN at.  (SEE TSAY MTSA pp. 92-93 FOR 
DISCUSSION.) 
 
IN ORDER FOR THE COEFFICIENTS OF THE MOVING AVERAGE REPRESENTATION 
TO BE EASILY INTERPRETED (AS IMPULSE RESPONSES), IT IS HELPFUL TO 
TRANSFORM THE MODEL TO ONE IN WHICH THE COMPONENTS OF THE VECTOR 
ERROR TERM ARE UNCORRELATED.  THIS IS DONE BY MEANS OF A CHOLESKY 
TRANFORMATION. 
 
SINCE Σ IS POSITIVE DEFINITE, IT MAY BE FACTORED AS Σ = LL’, WHERE L IS A 
LOWER TRIANGULAR MATRIX WITH POSITIVE DIAGONAL ELEMENTS.  THE 
VARIABLE bt = L-1at HAS cov(bt) = Ik.  THE MODEL MAY BE WRITTEN AS 
 

𝑍𝑡 = 𝝁 +∑ Ψ𝑗
∗𝒃𝑡−𝑗

∞

𝑗=0
 

 
WHERE Ψ0

∗ = 𝐿 AND Ψ𝑗
∗ = Ψ𝑗𝐿 FOR j > 0.  IN THIS REPRESENTATION, THE bj ARE 

UNCORRELATED.  IT IS MEANINGFUL TO CONSIDER THE OCCURRENCE OF A UNIT 
CHANGE IN ONE COMPONENT OF bj INDEPENDENTLY OF THE OTHER 
COMPONENTS, AND THE MATRIX Ψ𝑗

∗ IS READILY INTERPRETED (AS REFLECTING 

THE EFFECT OF A UNIT CHANGE IN bt ON THE COMPONENTS OF Zt).  THE 
MATRICES Ψ𝑗

∗ ARE CALLED THE IMPULSE RESPONSE WEIGHTS (OR IMPULSE 

RESPONSE FUNCTION) WITH RESPECT TO THE ORTHOGONAL INNOVATIONS bj. 
 
NOTE THAT THE CHOLESKY TRANSFORMATION DEPENDS ON THE ORDER OF THE 
COMPONENTS OF THE VECTOR at (OR Zt).  IF THE COMPONENTS ARE 
REARRANGED, A DIFFERENT TRANSFORMATION RESULTS.  THE USUAL 
PROCEDURE IS TO ARRANGE THE COMPONENTS IN AN ORDER THAT IS 
PHYSICALLY REASONABLE (IF SUCH AN ORDERING EXISTS), GIVEN THE NATURE OF 
THE APPLICATION. 
 
NOTE ALSO THAT THIS PROCEDURE IS NOT WITHOUT ITS OWN DIFFICULTY.  THE 
TRANSFORMED VARIABLES ARE LINEAR COMBINATIONS OF THE ORIGINAL 
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VARIABLES, AND IT MAY BE DIFFICULT TO INTERPRET THE PHYSICAL MEANING OF 
THE TRANSFORMED VARIABLES.  IN A SENSE, IN THIS APPROACH WE HAVE 
SUBSTITUTED ONE DIFFICULTY OR ANOTHER.  IN ANY EVENT, IMPULSE RESPONSE 
ANALYSIS IS USUALLY DONE WITH RESPECT TO ORTHOGONALIZED VARIATES. 
 

THEORETICAL STATIONARY MODELS: VECTOR MOVING AVERAGE PROCESS, 

VECTOR AUTOREGRESSIVE PROCESS, VECTOR AUTOREGRESSIVE MOVING 

AVERAGE PROCESS 

 
THE BOX-JENKINS APPROACH TO MODELING TIME SERIES IS TO ASSUME THAT 
THE POLYNOMIAL Ψ(B) CAN BE APPROXIMATED BY THE PRODUCT Φ-1(B) Θ(B) 
WHERE Φ(B) AND Θ(B) ARE FINITE AUTOREGRESSIVE AND MOVING MATRIX 
POLYNOMIALS OF ORDERS p AND q, RESPECTIVELY.  A VECTOR PROCESS 
INVOLVING ONLY A MOVING AVERAGE POLYNOMIAL IS CALLED A VECTOR 
MOVING AVERAGE (VMA) PROCESS; A VECTOR PROCESS INVOLVING ONLY AN 
AUTOREGRESSIVE POLYNOMIAL IS CALLED A VECTOR AUTOREGRESSIVE (VAR) 
PROCESS, AND A VECTOR PROCESS INVOLVING BOTH MOVING AVERAGE AND 
AUTOREGRESSIVE POLYNOMIALS IS CALLED A VECTOR AUTOREGRESSIVE MOVING 
AVERAGE (VARMA) PROCESS. 
 
A PROCESS DEFINED AS ABOVE IS STATIONARY IF THE (VECTOR) ROOTS OF THE Φ 
POLYNOMIAL ARE OUTSIDE THE UNIT CIRCLE.  IT IS INVERTIBLE (OR STABLE) IF 
THE ROOTS OF THE Θ POLYNOMIAL ARE OUTSIDE THE UNIT CIRCLE.  
INVERTIBILITY IS NECESSARY SO THAT THE CURRENT VALUE OF THE MODEL 
ERROR TERM CAN BE REPRESENTED AS A LINEAR COMBINATION OF PREVIOUS 
OBSERVATIONS, WITH WEIGHTS THAT TEND TO DIMINISH WITH INCREASING LAG, 
AND FOR WHICH THE SUM OF THE ABSOLUTE VALUES OF THE WEIGHTS IS 
BOUNDED.  (ESTIMATION OF THE MODEL ERROR TERM IS IMPORTANT IN 
ESTIMATION OF PARAMETERS AND IN FORECASTING.) 
 
FOR UNIVARIATE PROCESSES, THE MOVING-AVERAGE POLYNOMIAL ARISES IN 
MANY MODELS.  THE PROCEDURE OF DIFFERENCING A SERIES TO ACHIEVE 
STATIONARITY (I.E., INTRODUCING THE AUTOREGRESSIVE POLYNOMIAL FACTOR 
(1 – B)) GENERALLY REQUIRES THAT A MOVING AVERAGE TERM OF THE FORM (1 
– ΘB) BE PRESENENT THE MODEL.  IF DIFFERENCING IS APPLIED WHEN IT IS NOT 
JUSTIFIED (I.E., THE DATA ARE “OVERDIFFERENCED”), THEN A FACTOR OF (1-B) IS 
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INTRODUCED INTO THE MOVING AVERAGE POLYNOMIAL, CAUSING THE MODEL 
TO BE NONINVERTIBLE. 
 
OVERDIFFERENCING IS MORE LIKELY TO OCCUR IN MULTIVARIATE TIME SERIES 
MODELS THAN IN UNIVARIATE TIME SERIES MODELS, FOR A REASON TO BE 
DISCUSSED LATER. 
 
MOVING AVERAGE POLYNOMIALS ARE VERY IMPORTANT IN UNIVARIATE TIME 
SERIES MODELS, BUT TO SOME EXTENT LESS SO IN MULTIVARIATE TIME SERIES 
MODELS.  THE REASON FOR THIS IS THAT THE INTRODUCTION OF COVARIATES 
INTO A MODEL GENERALLY DECREASES THE EXTENT OF AUTOCORRELATION OF 
THE MODEL RESIDUALS, THEREBY DIMINISHING THE IMPORTANCE OF THE 
MOVING-AVERAGE POLYNOMIAL.  IN UNIVARIATE MODELS, COVARIATES TAKE 
THE FORM OF THE EXOGENOUS VARIABLES IN TRANSFER-FUNCTION MODELS.  IN 
MULTIVARIATE MODELS, COVARIATES MAY BE EITHER OTHER COMPONENTS OF 
THE MULTIVARIATE OBSERVATION VECTOR, OR EXOGENOUS VARIABLES NOT 
INCLUDED IN THE OBSERVATION VECTOR. 
 
BECAUSE OF THE PRECEDING FACT (THAT MOVING AVERAGE TERMS ARE LESS 
IMPORTANT IN VECTOR TIME SERIES MODELS THAN IN UNIVARIATE TIME SERIES 
MODELS), APPLIED TIME SERIES ANALYSIS INVOLVES VAR MODELS MUCH MORE 
THAN IT DOES VMA OR VARMA MODELS.  FOR THAT REASON, IN THE DISCUSSION 
THAT FOLLOWS, WE DISCUSS VAR MODELS FIRST. 
 
VECTOR AUTOREGRESSIVE (VAR) MODELS 
 
A VECTOR AUTOREGRESSIVE MODEL OF ORDER p (DENOTED AS VAR(p)) IS 
DEFINED AS 
 

𝒁𝑡 − 𝝁 =∑ Φ𝑗(𝒁𝑡−𝑗 − 𝝁) + 𝒂𝑡
𝑝

𝑗=1
 

OR 
Φ(𝐵)(𝒁𝑡 − 𝝁) = 𝒂𝑡 

 
WHERE µ IS THE MEAN OF THE PROCESS, 
 

Φ(𝐵) = 𝐼 − Φ1𝐵 −⋯−Φ𝑝𝐵
𝑝, 
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Φi IS A k BY k PARAMETER MATRIX WITH Φp ≠ 0, AND at IS A VECTOR WHITE 
NOISE SEQUENCE WITH MEAN 0 AND COVARIANCE MATRIX Σ. 
 
THE PROCESS IS STATIONARY IF ALL OF THE ROOTS OF THE DETERMINANTAL 
EQUATION det(Φ(B)) = 0 ARE GREATER THAN ONE IN ABSOLUTE VALUE, I.E., LIE 
OUTSIDE THE UNIT CIRCLE.  WHEN THIS CONDITION IS SATISFIED, THE MODEL 
MAY BE WRITTEN AS AN INFINITE MOVING AVERAGE PROCESS, 
 

𝒁𝑡 = 𝝁 +∑ Φ𝑗𝒂𝑡−𝑗
∞

𝑗=0
 

 
OR 
 

𝒁𝑡 = 𝝁 +𝚿(𝐵)𝒂𝑡 
 
WHERE 
 

Ψ(𝐵) = Φ−1(𝐵) 
 

AND THE COEFFICIENT MATRICES SATISFY ∑ ‖Ψ𝑗‖
2
< ∞∞

𝑗=0 . 

 
SINCE Φ(𝐵)Ψ(𝐵) = 𝐼 THE COEFFICIENT MATRICES MAY BE CALCULATED 
RECURSIVELY FORM THE RELATION 
 

Ψ𝑗 = Φ1Ψ𝑗−1 +⋯+Φ𝑝Ψ𝑗−𝑝 

 
WHERE Ψ0 = I AND Ψj = 0 FOR j < 0. 
 
REDUCED AND STRUCTURAL FORMS OF THE MODEL REPRESENTATION 
 
IN THE CASE OF UNIVARIATE AUTOREGRESSIVE TIME SERIES MODELS, THE MODEL 
COULD BE REPRESENTED IN AUTOREGRESSIVE FORM OR IN MOVING AVERAGE 
FORM, AND THESE TWO REPRESENTATIONS WERE UNIQUE.  IN THE CASE OF 
MULTIVARIATE AUTOREGRESSIVE TIME SERIES MODELS, A VARIETY OF 
REPRESENTATIONS IS AVAILABLE.  TWO STANDARD REPRESENTATIONS ARE THE 
STRUCTURAL FORM AND THE REDUCED FORM. 
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THE REDUCED FORM IS THE WOLD DECOMPOSITION, OR MOVING AVERAGE 
REPRESENTATION, JUST DESCRIBED ABOVE.  THE VAR MODEL IS: 
 

Φ(𝐵)(𝒁𝑡 − 𝝁) = 𝒂𝑡 
 
WHERE Φ(𝐵) = 𝐼 − Φ1𝐵 −⋯−Φ𝑝, Φ𝑖 IS A k x k PARAMETER MATRIX, AND at IS 

A VECTOR WHITE NOISE SEQUENCE WITH MEAN 0 AND COVARIANCE MATRIX Σ.  
FOR A VAR PROCESS, THE MOVING AVERAGE REPRESENTATION IS A UNIQUE 
REPRESENTATION OF THE STOCHASTIC PROCESS (AMONG MOVING AVERAGE 
REPRESENTATIONS). 
 
FOR THE STRUCTURAL FORM, WE TRANSFORM THE MODEL TO ONE IN WHICH 
THE MODEL RESIDUALS ARE UNCORRELATED (BUT NOT OF UNIT VARIANCES, AS 
WAS DONE FOR THE ORTHOGONAL-INNOVATIONS TRANSFORMATION DONE FOR 
THE IMPULE RESPONSE FUNCTION). 
 

SINCE Σ IS POSITIVE DEFINITE, THERE EXISTS A LOWER TRIANGULAR MATRIX Φ0
# 

WITH ONES ON THE DIAGONAL SUCH THAT Φ0
#ΣΦ0

#′ = Σ# IS A DIAGONAL MATRIX 

WITH POSITIVE DIAGONAL ELEMENTS.  PREMULTIPLYING THE VAR MOLDEL BY Σ# 
PRODUCES THE MODEL 
 

Φ0
#(𝒁𝑡 − 𝝁) =∑ Φ𝑗

#(𝑍𝑡−𝑗 − 𝝁) + 𝒃𝑡
𝑝

𝑗=1
 

 

WHERE Φ𝑗
# = Φ0

#Φ𝑗 AND 𝒃𝑡 = Φ0
#𝒂𝑡, AND cov(𝒃𝑡) = Σ#. 

 
THIS MODEL SHOWS THE CONCURRENT RELATIONSHIP AMONG THE 
COMPONENTS OF Zt.  IT IS CALLED A STRUCTURAL FORM OR STRUCTURAL 

REPRESENTATION OF THE MODEL.  SINCE Φ0
# IS LOWER TRIANGULAR, EACH OF 

THE COMPONENTS OF Zt IS DEFINED, IN ORDER, AS A FUNCTION OF PREVIOUSLY 
DEFINED COMPONENTS.  IT IS HENCE A RECURSIVE SPECIFICATION, WHICH 
DEPENDS ON THE ORDERING OF THE COMPONENTS.  WHAT ORDERING IS 
SELECTED DEPENDS ON THE NATURE OF THE APPLICATION. 
 
FOR A SPECIFIED ORDERING, THE STRUCTURAL SPECIFICATION UNIQUELY 
DEFINES THE STOCHASTIC PROCESS.  (THAT IS, THE MODEL IS IDENTIFIED, OR 
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IDENTIFIABLE, OR ESTIMABLE.)  ALTHOUGH MODEL UNIQUENESS IS NOT 
ESSENTIAL TO SOME APPLICATIONS (E.G., FORECASTING) UNIQUENESS IS 
CRUCIAL TO ESTIMATION; IF A PROCESS CAN BE REPRESENTED BY MULTIPLE 
MODEL SPECIFICATIONS, THEN THE NUMERICAL PROCEDURES USED TO ESTIMATE 
MODEL PARAMETERS MAY NEVER CONVERGE TO A SOLUTION. 
 
RELATIONSHIP TO TRANSFER FUNCTION MODEL 
 
THE TRANSFER FUNCTION MODEL DISCUSSED EARLIER IS A SPECIAL CASE OF THE 
VECTOR AUTOREGRESSIVE MODEL IN WHICH THE OUTPUT VARIABLES DEPEND 
ON PAST VALUES OF THE INPUT VARIABLES, BUT THE INPUT VARIABLES DO NOT 
DEPEND ON PAST VALUES OF THE OUTPUT VARIABLE (“STRONG EXOGENEITY”).  
IN ADDITION, THE ERROR TERMS FOR THE OUTPUT VARIABLES MUST NOT BE 
CORRELATED WITH THE INPUT VARIABLES.  SATISFYING THIS REQUIREMENT MAY 
REQUIRE A TRANSFORMATION OF VARIABLES.  SEE BJRL p. 512 FOR DISCUSSION. 
 
VECTOR MOVING AVERAGE (VMA) MODEL 
 
A VECTOR MOVING AVERAGE PROCESS OF ORDER q (DENOTED AS MA(q)) IS 
DEFINED AS 
 

𝑍𝑡 = 𝝁 + 𝒂𝑡 −∑ Θ𝑗𝒂𝑡−𝑗
𝑞

𝑗=1
 

 
OR 
 

𝒁𝑡 = 𝝁 + Θ(𝐵)𝒂𝑡 
 
WHERE µ IS THE MEAN OF THE PROCESS, 
 

Θ(𝐵) = 𝐼 − Θ1𝐵 −⋯− Θ𝑞𝐵
𝑞 , 

 
Θi IS A k BY k PARAMETER MATRIX WITH Θq ≠ 0, AND at IS A VECTOR WHITE NOISE 
SEQUENCE WITH MEAN 0 AND COVARIANCE MATRIX Σ. 
 
JUST AS IN THE UNIVARIATE CASE, A VECTOR MOVING AVERAGE MODEL MAY BE 
PREFERRED TO A VECTOR AUTOREGRESSIVE MODEL, IN A SITUATION WHERE A 
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VMA MODEL OF LOW ORDER q MAY PROVIDE AN ADEQUATE REPRESENTATION, 
BUT AN AUTOREGRESSIVE MODEL WOULD REQUIRE A HIGH ORDER p. 
 
IN PRACTICAL APPLICATIONS, A PURE VMA IS UNUSUAL.  MOST REAL-WORLD 
APPLICATIONS ARE BETTER REPRESENTED BY VARs OR VARMAs.  HISTORICALLY, 
ECONOMETRICIANS MIGHT FIT AN AUTOREGRESSIVE (LAGGED-VARIABLE) MODEL 
TO DATA, AND THEN USE A PURE MOVING AVERAGE MODEL TO REPRESENT THE 
AUTOCORRELATION STRUCTURE OF THE MODEL RESIDUALS. 
 
A VECTOR MOVING AVERAGE PROCESS IS UNIQUE (I.E., NO TWO SUCH 
PROCESSES HAVING DIFFERENT PARAMETER VALUES REPRESENT THE SAME 
STOCHASTIC PROCESS).  THAT IS, THE PARAMETERS ARE ESTIMABLE. 
 
VECTOR AUTOREGRESSIVE MOVING AVERAGE (VARMA) PROCESS 
 
IF THE MOVING AVERAGE REPRESENTATION OF THE WOLD DECOMPOSITION CAN 
BE APPROXIMATELY REPRESENTED BY A POLYNOMIAL PRODUCT OF THE FORM 
 

Ψ(𝐵) = Φ−1Θ(𝐵) 
 
WHERE Φ(B) AND Θ(B) ARE THE AUTOREGRESSIVE AND MOVING AVERAGE 
POLYNOMIALS DEFINED EARLIER, THEN THE MODEL IS A VECTOR 
AUTOREGRESSIVE – MOVING AVERAGE MODEL (DENOTED BY VARMA(p,q)): 
 

𝒁𝑡 − 𝝁 −∑ Φ𝑗(𝒁𝑡−𝑗 − 𝝁) + 𝒂𝑡 −∑ Θ𝑗𝒂𝑡−𝑗
𝑞

𝑗=1

𝑝

𝑗=1
 

 
WHERE 𝒂𝑡 IS AVECTOR WHITE NOISE SEQUENCE WITH MEAN 0 AND COVARIANCE 
MATRIX Σ. 
 
THE VARMA MODEL MAY BE REPRESENTED IN REDUCED (MOVING AVERAGE) OR 
STRUCTURAL FORMS, IN THE SAME WAY AS THE VAR MODEL.  IN THE CASE OF 
THE VAR, THE STRUCTURAL REPRESENTATION WAS UNIQUE.  IN THE CASE OF THE 
VARMA, THIS IS NO LONGER TRUE. 
 
IN THE UNIVARIATE CASE, AN ARMA REPRESENTATION IS UNIQUE, AS LONG AS 
IDENTICAL FACTORS DO NOT OCCUR IN THE AR AND MA POLYNOMIALS.  IN THE 
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MULTIVARIATE CASE, A MORE COMPLICATED CONDITION MUST BE IMPOSED TO 
OBTAIN UNIQUENESS OF THE MODEL REPRESENTATION.  UNIQUENESS IS 
DESIRED SO THAT THE MODEL IS ESTIMABLE (IDENTIFIED, IDENTIFIABLE).  IT IS 
NOT REQUIRED FOR SOME FORECASTING APPLICATIONS, BUT IS FOR OTHERS. 
 
THE CONDITIONS REQUIRED TO ASSURE UNIQUENESS ARE A LITTLE 
COMPLICATED, AND ARE DISCUSSED (FOR EXAMPLE) ON pp. 528-529 OF BJRL.  
THESE CONDITIONS ARE SUMMARIZED IN THE NEXT SECTION. 
 
THE VECTOR AUTOREGRESSIVE MOVING AVERAGE MODEL DOES NOT ARISE IN 
PRACTICE NEARLY AS OFTEN AS THE VECTOR AUTOREGRESSIVE MODEL.  ONCE 
COVARIATES ARE INTRODUCED INTO A MODEL (AS THE COMPONENTS OF THE 
MULTIVARIATE OBSERVATION VECTOR), AUTOREGRESSIVE TERMS ARE 
GENERALLY REQUIRED TO OBTAIN AN ADEQUATE REPRESENTATION; AND, ONCE 
THEY ARE INCLUDED, THE NEED FOR MOVING AVERAGE TERMS IS REDUCED (AS 
DISCUSSED EARLIER).  ON THE OTHER HAND, ONCE DIFFERENCING IS APPLIED TO 
ACHIEVE STATIONARITY, INCORPORATION OF A SIMILAR FACTOR (WITH ROOT 
OUTSIDE THE UNIT CIRCLE) IS OFTEN NECESSITATED.  THAT IS, THE REQUIREMENT 
FOR ADDING A MOVING AVERAGE COMPONENT TO A VAR MODEL IS OFTEN A 
TECHNICAL ISSUE, NOT A SUBSTANTIVE ONE.  AS WILL BE DISCUSSED IN THE 
FOLLOWING SECTION, ESTIMATION OF VARMA MODELS IS DIFFICULT, AND THAT 
FACT ALONE ACCOUNTS FOR LESSENED USE OF THAT MODEL CLASS IN 
APPLICATIONS. 
 
PROBLEMS ASSOCIATED WITH VARMA MODELS: EXCHANGEABILITY, 
OBSERVATIONAL EQUIVALENCE, IDENTIFIABILITY 
 
EXCHANGEABILITY (OBSERVATIONAL EQUIVALENCE) 
 
TWO DIFFERENT ARMA MODELS (I.E., TWO ARMA MODELS OF DIFFERENT 
ORDERS (VALUES OF p AND q)) ARE SAID TO BE EXCHANGEABLE IF THEY 
CORRESPOND TO THE SAME COVARIANCE STRUCTURE OF A PROCESS, OR, 
EQUIVALENTLY, HAVE THE SAME WOLD REPRESENTATION (INFINITE MOVING 
AVERAGE REPRESENTATION).  TWO EXCHANGEABLE ARMA MODELS ARE SAID TO 
BE OBSERVATIONALLY EQUIVALENT.  SEE REINSEL pp. 40-41 FOR DETAILS. 
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THE OCCURRENCE OF EXCHANGEABLE MODELS CAN BE CAUSED BY THE 
PRESENCE OF A UNIMODULAR MATRIX FACTOR IN AN AR OR MA MATRIX 
POLYNOMIAL.  A MATRIX IS UNIMODULAR IF AND ONLY IF ITS INVERSE EXISTS 
AND IS A MATRIX POLYNOMIAL OF FINITE DEGREE, OR (EQUIVALENTLY) IF AND 
ONLY IF ITS DETERMINANT IS A NONZERO CONSTANT. 
 
FOR EXAMPLE, SUPPOSE THAT U(B) IS A UNIMODULAR MATRIX OPERATOR 
POLYNOMIAL.  THEN THE PROCESS Zt = U(B)Θ(B)at IS EQUIVALENT TO THE 
PROCESS U(B)-1 Zt = Θ(B)at. 
 
AS AN EXAMPLE OF EXCHANGEABLE MODELS, CONSIDER THE BIVARIATE MA(1) 
MODEL Zt = at – Θat-1 AND THE BIVARIATE AR(1) MODEL Zt – ΦZt-1 = at, WHERE 
 

Θ = [
0 𝜃12
0 0

] 

 
AND 
 

Φ = [
0 −𝜃12
0 0

]. 

 
THESE MODELS ARE EXCHANGEABLE SINCE (1 – ΘB)-1 = (1 + ΘB). 
 
NOTE THAT ALTHOUGH THESE MODELS ARE EXCHANGEABLE, THEY ARE 
NEVERTHELSS IDENTIFIABLE.  THAT IS, THE MA(1) SPECIFICATION IS UNIQUE 
AMONG ALL MA(1) MODELS, AND THE AR(1) SPECIFICATION IS UNIQUE AMONG 
ALL AR(1) MODELS.  WITHIN THE MODEL CLASS, THE MODEL IS UNIQUE, AND THE 
PARAMETER MAY BE ESTIMATED WITHOUT ANY PROBLEM. 
 
IN ANY EVENT, THE PRESENCE OF EXCHANGEABILITY MAY CAUSE A PROBLEM IN 
INTERPRETATION AND UNDERSTANDING OF AN APPLICATION, SINCE THE 
MODELS ARE COMPLETELY DIFFERENT YET CORRESPOND TO THE SAME PROCESS 
(AND COVARIANCE FUNCTION). 
 
IDENTIFIABILITY 
 
EVEN MORE SERIOUS THAN THE PHENOMENON OF EXCHANGEABILITY IS THE 
ISSUE OF IDENTIFIABILITY.  A VARMA MODEL MAY BE MULTIPLIED ON BOTH SIDES 
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BY A UNIMODULAR MATRIX TO FORM AN OBSERVATIONALLY EQUIVALENT 
MODEL OF DIFFERENT ORDER.  SEE BJRL, REINSEL OR LÜTKEPOHL FOR 
DISCUSSION. 
 
FOR EXAMPLE, CONSIDER THE BIVARIATE VARMA(1,1) MODEL OBTAINED BY 
MULTIPLYING BOTH SIDES OF THE ABOVE MA(1) MODEL Zt = at – Θat-1 BY THE 
UNIMODULAR FACTOR U(B) = I - Φ*B.  THIS MODEL IS Zt – Φ*Zt-1 = at – Θ*at-1, 
WHERE 
 

Φ∗ = [
0 𝛼
0 0

] 

 
AND 
 

Θ∗ = [
0 𝜃12 + 𝛼
0 0

]. 

 
THIS MODEL IS OBSERVATIONALLY EQUIVALENT TO BOTH THE AR(1) AND MA(1) 
MODELS DEFINED ABOVE, FOR ANY VALUE OF α.  FOR EXAMPLE, 
 

(𝐼 − Φ∗𝐵)
−1(𝐼 − Θ∗) = (𝐼 + Φ∗)(𝐼 − Θ∗) = (𝐼 − Θ𝐵). 

 
AS A RESULT, SINCE α IS ARBITRARY, THE PARAMETERS Φ* AND Θ* IN THE 
VARMA(1,1) MODEL ARE NOT IDENTIFIABLE. 
 
THIS SITUATION IS ANALOGOUS TO THE SITUATION IN UNIVARIATE ARMA 
MODELS, WHERE THE PRESENCE OF COMMON FACTORS IN THE AR AND MA 
POLYNOMIALS CAUSES PROBLEMS.  IN THE MULTIVARIATE CASE, IT DOES NOT 
SUFFICE SIMPLY TO REMOVE COMMON FACTORS.  IN ORDER FOR A VARMA TO 
BE IDENTIFIABLE, THE FOLLOWING CONDITIONS MUST HOLD FOR THE AR MATRIX 
Φ(B) AND THE MA MATRIX Θ(B): 
 

1. THE MATRICES Φ(B) AND Θ(B) HAVE NO COMMON LEFT FACTORS OTHER 
THAN UNIMODULAR ONES (I.E., THEY ARE LEFT-COPRIME). 

2. WITH q AS SMALL AS POSSIBLE AND p AS SMALL AS POSSIBLE FOR THAT q, 
THE JOINT MATRIX [Φp, Θq] MUST BE OF RANK k, THE DIMENSION OF Zt. 
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IT IS EMPHASIZED THAT SIMPLY REMOVING COMMON FACTORS, EVEN IF THEY 
ARE UNIMODULAR, DOES NOT SUFFICE TO ACHIEVE UNIQUENESS IN A 
MULTIVARIATE VARMA REPRESENTATION.  THE SECOND CONDITION IS 
ESSENTIAL. 
 
BECAUSE OF THE POSSIBILITY OF LACK OF UNIQUENESS AND THE COMPLEXITY OF 
THE METHOD FOR OVERCOMING IT, THE PROCESS OF ESTIMATING PARAMETERS 
FOR VARMA MODELS IS COMPLICATED.  VAR AND MA MODELS DO NOT SUFFER 
FROM THIS LACK-OF-UNIQUENESS PROBLEM.  THIS SITUATION IS A SIGNIFICANT 
REASON WHY THE USE OF VAR MODELS IS MUCH MORE WIDESPREAD THAN THE 
USE OF VARMA MODELS, DESPITE THE FACT THAT THE LATTER MAY BE MORE 
EFFICIENT REPRESENTATIONS (I.E., INVOLVE FEWER PARAMETERS, OR MEASURE 
BETTER WITH RESPECT TO MODEL PERFORMANCE MEASURES SUCH AS THE AIC, 
BIC AND HQC). 
 
EXOGENOUS VARIABLES 
 
COVARIATES ARE VARIABLES (RANDOM OR OTHERWISE) RELATED TO THE 
RESPONSE VARIABLE OF INTEREST.  COVARIATES MAY BE EITHER COMPONENTS 
OF THE MULTIVARIATE OBSERVATION VECTOR (I.E., OF A JOINT DISTRIBUTION) 
OR EXOGENOUS VARIABLES.  EXOGENOUS VARIABLES WERE DISCUSSED EARLIER, 
IN THE SECTION ON TRANSFER-FUNCTION MODELS.  EXOGENOUS VARIABLES 
MAY BE INCLUDED AS COMPONENTS OF A MULTIVARIATE RESPONSE VARIABLE, 
BUT THAT IS NOT AS REASONABLE A REPRESENTATION AS INCLUDING THEM AS 
SEPARATE EXPLANATORY VARIABLES. 
 
MULTIVARIATE MODELS THAT INCLUDE EXOGENOUS VARIABLES ARE REFERRED 
TO AS VARX AND VARMAX MODELS. 
 

NONSTATIONARITY AND COINTEGRATION 

 
MANY REAL-WORLD TIME SERIES EXHIBIT NONSTATIONARY BEHAVIOR.  FOR 
UNIVARITE TIME SERIES ANALYSIS, THE STANDARD APPROACH TO REPRESENTING 
HOMOGENEOUS NONSTATIONARY BEHAVIOR IS TO ALLOW THE 
AUTOREGRESSIVE POLYNOMIAL TO INCLUDE ONE OR MORE ROOTS ON THE UNIT 
CIRCLE.  ONE WAY OF INCLUDING UNIT ROOTS IN A MODEL IS THROUGH 
DIFFERENCING THE DATA.  IN APPLYING DIFFERENCING, IT IS IMPORTANT TO NOT 
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DIFFERENCE A SERIES PAST THE POINT AT WHICH STATIONARITY IS ACHIEVED, OR 
ELSE A UNIT ROOT WILL BE INSERTED INTO THE MOVING AVERAGE POLYNOMIAL, 
AND THE SERIES WILL BE NONINVERTIBLE. 
 
WITH A MULTIVARIATE TIME SERIES, THE APPROACH OF DIFFERENCING THE DATA 
MUST BE APPROACHED WITH CAUTION.  THE APPROACH OF APPLYING 
DIFFERENCING TO ALL SERIES TO RENDER THEM STATIONARY IS PROBLEMATIC.  
THIS APPROACH OBVIOUSLY DOES NOT WORK IF SOME OF THE COMPONENTS 
ARE STATIONARY, SINCE IT WOULD LEAD TO OVERDIFFERENCING OF THOSE 
COMPONENTS. 
 
AN APPROACH THAT WORKS IN SOME SITUATIONS IS TO DIFFERENCE EACH 
COMPONENT SERIES SEPARATELY, THE NUMBER OF TIMES REQUIRED TO ACHIEVE 
STATIONARITY.  IF THIS IS DONE, THE MODEL IS OF THE FORM: 
 

Φ1(𝐵)𝐷(𝐵)𝒁𝑡 = Θ(𝐵)𝒂𝑡 
 
WHERE 
 

𝐷(𝐵) = 𝑑𝑖𝑎𝑔[((1 − 𝐵)𝑑1 , … , (1 − 𝐵)𝑑𝑘] 
 
IS A DIAGONAL MATRIX, d1,…,dk ARE NONNEGATIVE INTEGERS, AND det[Φ1(B)] = 
0 HAS ALL ROOTS GREATER THAN ONE IN ABSOLUTE VALUE.  THE TRANSFORMED 
VECTOR SERIES 
 

𝑊𝑡 = 𝐷(𝐵)𝑍𝑡 
 
IS A STATIONARY VARMA(p,q) PROCESS. 
 
IN THE PRECEDING METHOD, THE REUQIUREMENT THAT det[Φ1(B)] = 0 HAS ALL 
ROOTS GREATER THAN ONE IN ABSOLUTE VALUE IS ESSENTIAL.  IT IS NOT 
SATISFIED IF THERE EXIST LINEAR COMBINATIONS OF THE DATA SUCH THAT THE 
NUMBER OF DIFFERENCES REQUIRED TO ACHIEVE STATIONARITY FOR THE LINEAR 
COMBINATONS IS LOWER THAN THE NUMBER OF DIFFERENCES REQUIRED TO 
ACHIEVE STATIONARITY OF EACH COMPONENT SERIES.  IF THIS SITUATON 
APPLIES, THEN THE TRANSFORMED SERIES WILL NOT BE INVERTIBLE, AND 
PROBLEMS WILL ARISE IN ESTIMATION AND FORECASTING. 
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FOR EXAMPLE, SUPPOSE THAT EVERY COMPONENT SERIES Zit IS 
NONSTATIONARY, THAT THE FIRST DIFFERENCES (1 – B)Zit ARE STATIONARY, BUT 
THAT CERTAIN LINEAR COMBINATIONS Yit = bi’Zt ARE STATIONARY.  IN THIS CASE, 
THE COMPONENT TIME SERIES ARE SAID TO BE COINTEGRATED WITH 
COINTEGRATING VECTORS bi.  IF DIFFERENCING IS APPLIED TO ALL TIME SERIES IN 
THIS CASE, OVERDIFFERENCING WILL RESULT (EVEN THOUGH ALL SERIES ARE 
INDIVIDUALLY NONSTATIONARY)), AND PROBLEMS WILL ARISE (IN ESTIMATION 
AND FORECASTING). 
 
A TIME SERIES Zt IS SAID TO BE AN INTEGRATED PROCESS OF ORDER d (DENOTED 
AS I(d)), IF (1 – B)dZt IS STATIONARY AND INVERTIBLE, WHERE d > 0.  THE NUMBER 
d IS CALLED THE ORDER OF INTEGRATION, AND IT INDICATES THE MULTIPLICITY 
OF THE UNIT ROOT.  IF Zit ARE I(d) NONSTATIONARY AND b’Zt IS I(h) WITH h < d, 
THEN Zt IS COINTEGRATED.  THE VECTOR b IS CALLED A COINTEGRATING VECTOR.  
IN PRACTICAL APPLICATIONS, THE MAJOR CASE IS d = 1 AND h = 0. 
 
THE PRECEDING DEFINITION REFERS TO A SINGLE COINTEGRATING VECTOR.  IN 
GENERAL, THERE MAY BE MORE THAN ONE LINEARLY INDEPENDENT 
COINTEGRATING VECTOR.  CONSIDER A NONSTATIONARY VARMA MODEL Φ(B)Zt 
= Θ(B)at HAVING d < k ROOTS EQUAL TO ONE AND OTHER ROOTS GREATER THAN 
ONE IN ABSOLUTE VALUE.  THEN THE MATRIX Φ(1) = I – Φ1 - … - Φp HAS RANK r = 
k – d, AND IT CAN BE ESTABLISHED THAT r LINEARLY INDEPENDENT VECTORS bi 
EXIST SUCH THAT bi’Zt IS STATIONARY.  IN THIS CASE, Zt IS SAID TO HAVE 
COINTEGRATING RANK r. 
 
COINTEGRATION IS EXHIBITED BY SERIES HAVING A COMMON TREND, SUCH AS 
THE VALUE OF CURRENCY IN DIFFERENT MARKETS, OR OTHER CLOSELY RELATED 
ECONOMIC SERIES. 
 
THE ERROR CORRECTION MODEL 
 
A STANDARD MODEL USED TO REPRESENT COINTEGRATION IS THE ERROR 
CORRECTION (EC) MODEL.  AS ABOVE, LET US ASSUME A MODEL OF THE FORM 
Φ(B)Zt = Θ(B)at WHERE det[Φ(B)] = 0 HAS d < k ROOTS EQUAL TO ONE AND ALL 
OTHER ROOTS GREATER THAN ONE IN ABSOLUTE VALUE.  A PROCESS DESCRIBED 
BY THIS MODEL IS CALLED PARTIALLY NONSTATIONARY.  THIS MODEL IS SAID TO 
BE REPRESENTED IN ERROR-CORRECTION FORM IF IT IS EXPRESSED AS FOLLOWS: 
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𝑾𝑡 = 𝐶𝒁𝑡−1 +∑ Φ𝑗
∗𝑊𝑡−𝑗 + 𝒂𝑡 −∑ 𝒂𝑡−𝑗

𝑞

𝑗=1

𝑝−1

𝑗=1
 

 
WHERE 
 

𝑾𝑡 = (1 − 𝐵)𝒁𝑡 
 

Φ𝑗
∗ = −∑ Φ𝑖

𝑝

𝑖=𝑗+1
 

 
AND 
 

𝐶 = −Φ(1) = −(𝐼 −∑ Φ𝑗
𝑝

𝑗=1
). 

 
THIS MODEL DIFFERS FROM ONE INVOLVING TRANSFORMATION TO A 
DIFFERENCED VARIATE (1-B)Zt IN THAT THE DIFFERENCE OCCURS ON THE LEFT-
HAND-SIDE OF THE MODEL BUT THE UNDIFFERENCED VARIATE Zt (THE “LEVEL” OF 
THE VARIATE) OCCURS ON THE RIGHT-HAND SIDE.  THE MOTIVATION FOR THE 
MODEL IS THAT THE VARIATE Zt TENDS TO MOVE TO THE RECENT LEVEL OF THE 
SERIES (IN CONTRAST TO A FIRST-DIFFERENCE MODEL IN WHICH THE VARIATE Zt 
TENDS TO MOVE TO THE PRECEDING VALUE OF THE VARIATE).  THAT IS, THE 
PROCESS TENDS TO “CORRECT” DEPARTURES FROM THE RECENT MEAN. 
 

METHODS OF MODEL SIMPLIFICATION: ASSUMPTIONS, RESTRICTIONS, 

CANONICAL CORRELATION ANALYSIS, PRINCIPAL COMPONENTS ANALYSIS 

 
A MAJOR DIFFICULTY ASSOCIATED WITH MULTIVARIATE TIME SERIES MODELS IS 
THAT THE VERY LARGE NUMBER OF PARAMETERS MAKES IT DIFFICULT TO 
DETERMINE A REASONABLE MODEL.  A NUMBER OF APPROACHES ARE AVAILABLE 
TO ASSIST THE MODEL IDENTIFICATION PROCESS.  THESE INCLUDE: 
 

1. MODEL SPECIFICATION GUIDED BY SUBSTANTIVE THEORY (E.G., BY 
ECONOMIC THEORY, IN AN ECONOMIC APPLICATION).  FOR THIS 
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APPROACH, IT IS OFTEN EASIER TO WORK WITH THE STRUCTURAL FORM 
OF THE MODEL (INSTEAD OF THE REDUCED FORM). 

2. REDUCTION IN THE NUMBER OF VARIABLES, BY DISCARDING VARIABLES 
THAT ARE HIGHLY CORRELATED WITH OTHERS. 

3. REDUCTION IN THE NUMBER OF VARIABLES BY REPLACING SETS OF 
VARIABLES WITH LINEAR COMBINATIONS THAT ACCOUNT FOR MUCH OF 
THE VARIATION IN THE ORIGINAL VARIABLES. 

 
TO ASSIST REDUCTION IN THE NUMBER OF VARIABLES, STANDARD 
MULTIVARIATE ANALYSIS TOOLS, SUCH AS CANONICAL CORRELATION AND 
PRINCIPAL COMPONENTS ANALYSIS ARE AVAILABLE. 
 
AFTER THE VARIABLE SET HAS BEEN REDUCED AS MUCH AS POSSIBLE, THE 
VARIOUS TIME SERIES DESCRIPTORS, SUCH AS THE CROSS-CORRELATION 
FUNCTION, MAY BE EXAMINED TO SUGGEST REASONABLE ORDERS FOR 
TENTATIVE MODELS.  INITIALLY, ATTENTION SHOULD FOCUS ON THE USE OF VAR 
REPRESENTATIONS, SINCE THE IDENTIFICATION AND ESTIMATION PROCEDURES 
FOR THIS CLASS OF MODELS IS SIMPLER THAN FOR ARMA MODELS. 
 
THE IDENTIFICATION PROCESS FOR MULTIVARIATE MODELS IS SIMILAR TO THAT 
FOR UNIVARIATE MODELS (ESPECIALLY TRANSFER-FUNCTION MODELS) AND WILL 
NOT BE DESCRIBED IN FURTHER DETAIL HERE.  SEE BJRL, TSAY MTSA, LÜTKEPOHL 
OR HAMILTON FOR DETAILS. 

 

STATIONARITY TRANSFORMATIONS AND TESTS (FOR HOMOGENEITY, 

COINTEGRATION) 

 
THE VAR, VMA AND VARMA MODELS ARE USED TO REPRESENT STATIONARY TIME 
SERIES.  IF THE OBSERVED DATA ARE NONSTATIONARY, IT IS NECESSARY TO 
TRANSFORM THE DATA TO STATIONARY VARIABLES OR IDENTIFY A 
COINTEGRATED REPRESENTATION. 
 
NONSTATIONARY BEHAVIOR OF COMPONENT SERIES IS ASSESSED IN THE SAME 
FASHION AS WAS USED FOR UNIVARIATE PROCESSES.  COINTEGRATED BEHAVIOR 
IS ASSESSED BY OBSERVING THAT COMPONENTS THAT ARE NONSTATIONARY 
MOVE TOGETHER. 
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TESTS FOR UNIT ROOTS WERE DESCRIBED EARLIER. 
 
AIDS TO MODEL IDENTIFICATION 
 
IN ADDITION TO THE PROCEDURES THAT ARE ANALOGOUS TO THOSE USED FOR 
SINGLE-VARIABLE UNIVARIATE OR TRANSFER-FUNCTION MODELS (I.E., THE ACF, 
PACF AND CCF), A NUMBER OF OTHER PROCEDURES ARE AVAILABLE TO ASSIST 
MODEL IDENTIFICATION IN THE MULTIVARIATE CASE, FOR VARMA MODELS.  
THESE INCLUDE THE USE OF KRONECKER INDICES, SCALAR COMPONENT MODELS, 
AND ORDER DETERMINATION USING LINEAR LEAST SQUARES. 
 
GRANGER-CAUSALITY TESTS 
 
IN FORECASTING A MULTIVARIATE MODEL, TWO CASES ARISE.  THE FIRST IS THE 
PROBLEM OF MAKING UNCONDITIONAL FORECASTS, AND THE SECOND IS THE 
PROBLEM OF MAKING FORECASTS CONDITIONAL ON SPECIFIED VALUES FOR 
SOME OF THE COMPONENT VARIABLES OR EXOGENOUS VARIABLES.  IN ORDER 
TO DO CONDITONAL FORECASTING, IT IS NECESSARY TO IDENTIFY THE 
EXOGENEITY PROPERTIES OF THE EXPLANATORY VARIABLES.  THIS TOPIC WAS 
DISCUSSED IN THE SECTION ON TRANSFER-FUNCTION MODELS. 
 
THE ISSUE OF MAKING CONDITIONAL FORECASTS AND ASSESSING VARIABLE 
EXOGENEITY FALLS IN THE REALM OF CAUSAL MODELING AND ANALYSIS.  
CAUSAL MODELING IS BEST GUIDED BY SUBSTANTIVE KNOWLEDGE, BUT IN SOME 
CASES IT CAN BE ASSISTED BY STATISTICAL ANALYSIS.  IN THIS RESPECT, A 
RELEVANT TOPIC IS THE NOTION OF GRANGER CAUSALITY. 
 
WITHIN A MODEL, A VARIABLE IS SAID TO BE A GRANGER CAUSE OF ANOTHER IF 
INFORMATION ABOUT THE FIRST VARIABLE REDUCES THE FORECAST ERROR 
VARIANCE OF THE SECOND, CONDITIONAL ON ALL OTHER VARIABLES IN THE 
MODEL.  TWO VARIABLES MAY BE GRANGER CAUSES OF EACH OTHER, IN WHICH 
CASE THE VARIABLES ARE SAID TO HAVE INSTANTANEOUS GRANGER CAUSALITY. 
 

ESTIMATION 

 
THE PARAMETERS OF AN IDENTIFIED MULTIVARIATE TIME SERIES MODEL ARE 
ESTIMATED USING THE SAME TECHNIQUES AS WERE DESCRIBED EARLIER FOR 
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UNIVARIATE TIME SERIES MODELS.  THESE INCLUDE THE METHOD OF MOMENTS, 
THE METHOD OF LEAST SQUARES, THE METHOD OF MAXIMUM LIKELIHOOD, AND 
BAYESIAN ESTIMATION.  BECAUSE OF THE LARGE NUMBER OF PARAMETERS 
INVOLVED IN MULTIVARIATE TIME SERIES MODELS, THESE PROCEDURES ARE 
MORE DIFFICULT TO IMPLEMENT IN THE MULTIVARIATE CASE.  (ALTHOUGH THE 
CONCEPTUAL APPROACHES (SUCH AS MAXIMUM LIKELIHOOD) ARE THE SAME, 
THEY ARE MORE DIFFICULT TO IMPLEMENT IN THE MULTIVARIATE CASE BECAUSE 
THE NUMERICAL METHODS USED TO IMPLEMENT THE METHODS MAY CONVERGE 
SLOWLY (OR NOT AT ALL) AS THE NUMBER OF PARAMETERS INCREASES.)  IT IS 
THE PURPOSE OF THIS PRESENTATION TO DESCRIBE BASIC CONCEPTS, NOT 
DETAILED COMPUTATIONAL PROCEDURES.  FOR THIS REASON, ESTIMATION 
METHODS WILL NOT BE DESCRIBED FOR MULTIVARIATE MODELS, EXCEPT FOR A 
BRIEF DISCUSSION OF LEAST-SQUARES ESTIMATION, TO FOLLOW.  SEE THE CITED 
REFERENCES ON MULTIVARIATE TIME SERIES ANALYSIS FOR DISCUSSION AND 
DETAILS. 
 
LEAST-SQUARES ESTIMATION FOR MULTIVARIATE MODELS 
 
THIS SECTION PRESENTS INFORMATION ABOUT THE METHOD OF LEAST-
SQUARES, IN THE ESTIMATION OF PARAMETERS OF A MULTIVARIATE 
REGRESSION MODEL, AND, IN PARTICULAR, OF A VECTOR AUTOREGRESSIVE 
MODEL.  THE PRESENTATION FOLLOWS THE NOTATION OF GREENE OP. CIT., pp. 
292-296 (AND IS SIMILAR TO THE PRESENTATION IN ZIVOT AND WANG pp. 364-
366, AND, FOR A SPECIAL CASE, TO THE PRESENTATION IN TSAY pp. 44-47). 
 
LET US CONSIDER THE CASE OF AN UNRESTRICTED SYSTEM OF M LINEAR 
REGRESSION EQUATIONS: 
 

𝒚𝑖 = 𝑿𝑖𝜷𝑖 + 𝜺𝑖 , 𝑖 = 1,…𝑀, 
 
WHERE yi DENOTES THE i-th DEPENDENT VARIABLE, M DENOTES THE NUMBER OF 
DEPENDENT VARIABLES, ki DENOTES THE NUMBER OF REGRESSORS IN THE i-th 

EQUATION, K = ∑ 𝑘𝑖
𝑀
𝑖=1 , T DENOTES THE NUMBER OF OBSERVATIONS, yi IS (T x 1), 

Xi is (T x ki), βi is (K x 1), AND εi is (T x 1).  WE ASSUME STRICT EXOGENEITY OF Xi, 
 

𝐸(𝜺|𝑿1, … , 𝑿𝑀] = 𝟎 
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AND HOMOSCEDASTICITY, 
 

𝐸[𝜀𝑚𝜀𝑚
′ |𝑿1, … , 𝑿𝑀] = 𝜎𝑚𝑚𝑰𝑇 . 

 
THE ERROR TERMS εi ARE CORRELATED ACROSS THE EQUATIONS (VARIABLES), 
BUT OVER OBSERVATIONS (WHICH, IN A TIME-SERIES APPLICATION, IS TIME): 
 

𝐸[𝜀𝑖𝑡𝜀𝑗𝑠
′ |𝑿1, … , 𝑿𝑀] = 𝜎𝑖𝑗 , 𝑖𝑓⁡𝑡 = 𝑠⁡𝑎𝑛𝑑⁡0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 
THIS MODEL IS CALLED A SEEMINGLY UNRELATED REGRESSIONS (SUR) MODEL. 
 
THE M EQUATIONS MAY BE STACKED TO FORM A GENERALIZED REGRESSION 
MODEL (OR “GIANT” REGRESSION MODEL): 
 

[

𝒚1
𝒚2
⋮
𝒚𝑀

] = [

𝑿1 0 … 0
0 𝑿2 … 0
⋮
0

⋮
0

⋱
…

⋮
𝑿𝑀

] [

𝜷1
𝜷2
⋮
𝜷𝑀

] + [

𝜺1
𝜺2
⋮
𝜺𝑀

] 

OR 
 

𝒚 = 𝑿𝜷 + 𝜺 
 
WHERE y IS (MT x 1), X IS (MT x K), β IS (K x 1) AND ε IS (MT x 1). 
 
FOR EACH OF THE i OBSERVATIONS, THE M x M COVARIANCE MATRIX OF THE 
MODEL ERROR TERM IS 
 

Σ = [

𝜎11 𝜎12 ⋯ 𝜎1𝑀
𝜎21 𝜎22 ⋯ 𝜎2𝑀
⋮
𝜎𝑀1

⋮
𝜎𝑀2

⋱ ⋮
⋯ 𝜎𝑀𝑀

]. 

 
WE HAVE 
 

𝐸[𝜀𝑖𝜀𝑗
′|𝑿1, … , 𝑿𝑀] = 𝜎𝑖𝑗𝑰𝑇 

 
AND 
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𝐸[𝜺𝜺′|𝑿1, … , 𝑿𝑀] = Ω = [

𝜎11𝐼 𝜎12𝐼 ⋯ 𝜎1𝑀𝐼

𝜎21𝐼 𝜎22𝐼 ⋯ 𝜎2𝑀𝐼
⋮

𝜎𝑀1𝐼
⋮

𝜎𝑀2𝐼
⋱ ⋮

⋯ 𝜎𝑀𝑀𝐼

] = Σ⨂𝐼, 

 
HENCE 
 

Ω−1 = Σ−1⨂𝐼. 
 
DENOTING THE ij-th ELEMENT OF Σ-1 BY σij, THE GENERALIZED LEAST-SQUARES 
ESTIMATOR OF β IS GIVEN BY: 
 

𝜷̂ = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 = [𝑋′(Σ−1⨂𝐼)𝑋]−1𝑋′(Σ−1⨂𝐼)𝒚. 
 
IT CAN BE SHOWN THAT IN THE CASE IN WHICH THE SAME REGRESSORS 
(EXPLANATORY VARIABLES) ARE USED IN EVERY EQUATION (WHICH IS THE CASE 
FOR A VAR), OR THE REGRESSORS IN ONE EQUATION ARE A SUBSET OF THOSE IN 
ANOTHER, THAT THIS REDUCES TO 
 

𝜷̂ = [𝑋′𝑋]−1𝑋′𝒚 = [∑ 𝑥𝑡
𝑇

𝑡=1
𝑥𝑡
′]
−1

∑ 𝑥𝑡
𝑇

𝑡=1
𝑦𝑡
′, 

 
WHERE, IN THIS EXPRESSION, THE MATRIX X IS THE COMMON VALUE OF THE 
MATRICES Xi, NOT THE “GIANT” MATRIX X GIVEN EARLIER.  THIS EXPRESSION 
DOES NOT INVOLVE THE COVARIANCE MATRIX Σ.  THIS MEANS THAT THE 
GENERALIZED LEAST-SQUARES ESTIMATE IS IDENTICAL TO THE ORDINARY LEAST-
SQUARES ESTIMATE. 
 
IT CAN ALSO BE SHOWN (SEE GREENE) THAT THE PARAMETER ESTIMATES FOR 
EACH REGRESSION EQUATION (CORRESPONDING TO EACH DEPENDENT 
VARIABLE) CAN BE OBTAINED BY APPLYING OLS TO EACH EQUATION SEPARATELY.  
(THIS SAME RESULT HOLDS IF THE DEPENDENT VARIABLES ARE UNCORRELATED.) 
 

TESTS OF MODEL ADEQUACY 

 
MODELS ARE TESTED FOR ADEQUACY BY TESTING WHETHER THE MODEL 
RESIDUALS ARE WHITE, AND BY TESTING THE SIGNIFICANCE OF MODEL 
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PARMATERS.  FOR MULTIVARIATE MODELS THESE TESTS ARE ANALOGOUS TO 
THOSE USED FOR UNIVARIATE MODELS. 
 

MEASURES OF MODEL EFFICIENCY 

 
THE EFFICIENCY OF MODELS IS ASSESSED USING THE SAME CRITERIA AS WERE 
USED IN THE UNIVARIATE CASE, I.E., THE AIC, THE BIC AND THE HQC. 
 

IMPULSE RESPONSE 

 
AS WAS DISCUSSED EARLIER, ESTIMATION OF AN IMPULSE RESPONSE OF ONE 
VARIABLE ON ANOTHER (THE RESPONSE VARIABLE) IS REASONABLE ONLY IF THE 
PULSED VARIABLE IS UNCORRELATED WITH THE OTHER MODEL VARIABLES (I.E., 
OTHER THAN THE RESPONSE VARIABLE).  IN GENERAL, THE ERROR TERMS IN A 
MULTIVARIATE MODEL ARE CORRELATED.  TO ESTIMATE REASONABLE IMPULSE 
RESPONSES, IT IS DESIRABLE TO TRANSFORM THE MODEL SO THAT THE MODEL 
ERROR TERMS ARE UNCORRELATED (ORTHOGONAL).  THIS TOPIC WAS 
ADDRESSED EARLIER IN THE SECTION ON DESCRIPTORS OF MULTIVARIATE TIME 
SERIES. 
 

FORECASTING (UNCONDITIONAL VS. CONDITIONAL) 

 
THE ISSUE OF MAKING UNCONDITIONAL VS. CONDITIONAL FORECASTS WAS 
ADDRESSED IN THE PRECEDING SECTION ON MODEL IDENTIFICATION. 
 

FORECAST ERROR VARIANCE DECOMPOSITION 

 
WHEN A MODEL INCLUDES MULTIPLE VARIABLES, IT IS OF INTEREST TO ESTIMATE 
THE PORTION OF THE FORECAST ERROR VARIANCE IN ONE VARIABLE THAT IS 
ASSOCIATED WITH EACH OF THE OTHER VARIABLES.  SINCE THE MODEL 
VARIABLES ARE CORRELATED, THE CONTRIBUTION OF A VARIABLE TO THE TOTAL 
ERROR VARIANCE DEPENDS ON WHAT OTHER VARIABLES ARE INCLUDED IN THE 
MODEL.  A STANDARD PROCEDURE IS TO ORDER THE MODEL VARIABLES AND 
ESTIMATE THE EXTENT TO WHICH THE FORECAST ERROR VARIANCE CHANGES AS 
EACH VARIABLE IS REMOVED FROM THE MODEL.  OBVIOUSLY, THE 



98 
 

CONTRIBUTION OF A PARTICULAR VARIABLE TO THE TOTAL FORECAST ERROR 
VARIANCE WILL DEPEND ON THE ORDER IN WHICH THE VARIABLES ARE 
REMOVED. 
 

PROCESS CONTROL 

 
A TIME SERIES MODEL MAY BE USED FOR PROCESS CONTROL.  THE METHODS OF 
PROCESS CONTROL ARE SIMILAR TO THOSE IN FORECASTING, EXCEPT FOR THE 
FACT THAT THE FORECAST IS DESIRED FOR THE SITUATION IN WHICH FORCED 
CHANGES ARE MADE IN THE CONTROL VARIABLES.  TO USE A MODEL TO 
ESTIMATE THE CHANGES THAT FORCED CHANGES IN CERTAIN VARIABLES WILL 
CAUSE IN OTHER VARIABLES REQUIRES THAT THE MODEL BE ESTIMATED FROM A 
CAUSAL MODEL (SUCH AS AN EXPERIMENTAL DESIGN, IN WHICH FORCED 
CHANGES ARE MADE IN THE CONTROL VARIABLES). 
 
SOME ASPECTS OF PROCESS CONTROL WERE DISCUSSED EARLIER, IN THE 
SECTION ON TRANSFER-FUNCTION MODELS.  FOR DISCUSSION OF OPTIMAL 
FEEDBACK CONTROL USING ARMAX MODELS, SEE REINSEL OP. CIT. (2ND ED), pp. 
280-285. 
 
AS MENTIONED, THE TOPIC OF OPTIMAL CONTROL IS NOT ADDRESSED IN THIS 
PRESENTATION, WHICH FOCUSES ON ESTIMATION AND FORECASTING.  ONCE A 
VALID MULTIVARIATE TIME SERIES MODEL HAS BEEN DEVELOPED, THE 
TECHNIQUES OF OPTIMIZATION MAY BE USED TO DETERMINE OPTIMAL 
CONTROL SCHEMES (PROVIDED APPROPRIATE EXOGENEITY CONDITIONS ARE 
SATISFIED).  DETERMINATION OF SUCH CONTROL SCHEMES REQUIRES FACILITY IN 
THE USE OF CONSTRAINED OPTIMIZATION TECHNIQUES, WHICH MAY BE 
IMPLEMENTED USING MODELING AND OPTIMIZATION SOFTWARE PACKAGES 
SUCH AS GAMS. 
 

ALTERNATIVE REPRESENTATIONS: STATE SPACE, KALMAN FILTER 

 
THE PRECEDING SECTIONS HAVE DESCRIBED TIME SERIES ANALYSIS FOR 
STATIONARY PROCESSES IN THE CASE OF NO MEASUREMENT ERROR AND TIME-
INVARIANT PARAMETERS.  THEORY IS AVAILABLE FOR ANALYSIS OF TIME SERIES 
IN THE CASE OF TIME-VARYING PARAMETERS AND MEASUREMENT ERROR.  THIS 
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THEORY INCLUDES METHODS SUCH AS ARCH, GARCH, STATE-SPACE MODELS, 
AND THE KALMAN FILTER.  FOR DISCUSSION OF THESE TOPICS, SEE THE CITED 
REFERENCES.  FOR DETAILED DISCUSSION OF KALMAN FILTER SEE 
 
DURBIN, J. AND S. J. KOOPMAN, TIME SERIES ANALYSIS BY STATE SPACE 
METHODS, 2ND ED. (OXFORD UNIVERSITY PRESS, 2012). 
 

ALTERNATIVES TO THE GAUSSIAN DISTRIBUTION; COPULAS 

 
[NOTE: THE MATERIAL PRESENTED IN THIS SECTION IS NOT INCLUDED IN THE 
PRESENTATION ON CONTINUOUS MULTIVARIATE ANALYSIS.] 
 
MUCH OF THE THEORY OF MULTIVARIATE TIME SERIES IS BASED ON THE 
ASSUMPTION THAT THE MODEL RESIDUALS ARE NORMALLY DISTRIBUTED, OR 
GAUSSIAN.  A NORMAL DISTRIBUTION IS CHARACTERIZED BY ITS MEAN VECTOR 
AND COVARIANCE MATRIX.  FOR THIS DISTRIBUTION, THE CORRELATIONAL 
STRUCTURE IS VERY SIMPLE – IT IS SYMMETRIC AND ELLIPTICAL IN NATURE.  IT IS 
COMPLICATED TO DESCRIBE, REQUIRING THE SPECIFICATION OF A MATRIX 
CONTAINING K x K PARAMETERS (THE CORRELATIONS), WHERE K IS THE NUMBER 
OF COMPONENTS OF THE MULTIVARIATE RESPONSE VARIABLE. 
 
IN SOME APPLICATIONS, THE GAUSSIAN ASSUMPTION IS NOT APPROPRIATE.  IN 
FINANCE, FOR EXAMPLE, THE BEHAVIOR OF INVESTORS IS MUCH MORE HIGHLY 
CORRELATED IN A FALLING MARKET (DOWNSIDE, CRISIS, PANIC) THAN IN A 
RISING MARKET.  SUCH BEHAVIOR IS AT DIFFERENCE WITH THE SYMMETRIC 
NATURE OF THE GAUSSIAN CORRELATION SPECIFICATION.  IN FINANCE 
APPLICATIONS, IT IS ALSO DESIRABLE TO REPRESENT CORRELATION OF HIGH-
DIMENSIONAL RANDOM VARIABLES BY ONE OR A FEW PARAMETERS, NOT BY ALL 
OF THE ENTRIS OF A CORRELATION MATRIX. 
 
A MEANS FOR ADDRESSING THESE ISSUES IS PROVIDED BY COPULA THEORY.  THIS 
SECTION DESCRIBES SOME BASIC CONCEPTS OF COPULA THEORY.  FOR A 
READABLE DISCUSSION OF COPULA THEORY, SEE THE WIKIPEDIA ARTICLE POSTED 
AT https://en.wikipedia.org/wiki/Copula_(probability_theory) . 
 
COPULAS HAVE BEEN WIDELY USED IN MATHEMATICAL FINANCE TO MODEL AND 
MINIMIZE “TAIL RISK” (RISK ASSOCIATED WITH RARE EVENTS, ASSOCIATED WITH 

https://en.wikipedia.org/wiki/Copula_(probability_theory)
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THE TAILS OF A PROBABILITY DENSITY) AND PORTFOLIO OPTIMIZATION 
APPLICATIONS.  THEY ARE USED IN RISK MANAGEMENT, PORTFOLIO 
MANAGEMENT, PORTFOLIO OPTIMIZATION AND DERIVATIVES PRICING. 
 
A COPULA IS A MULTIVARIATE PROBABILITY DISTRIBUTION FOR WHICH THE 
MARGINAL PROBABILITY DISTRIBUTION OF EACH VARIABLE IS UNIFORM.  SKLAR’S 
THEOREM STATES THAT ANY MULTIVARIATE JOINT DISTRIBUTION CAN BE 
WRITTEN IN TERMS OF UNIVARIATE MARGINAL DISTRIBUTION FUNCTIONS AND A 
COPULA WHICH DESCRIBES THE DEPENDENCE STRUCTURE AMONG THE 
VARIABLES. 
 
SUPPOSE THAT (X1, X2,…,Xd) IS A RANDOM VECTOR WITH CONTINUOUS 
MARGINAL CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) Fi(x) = Pr[Xi <= x].  THE 
RANDOM VECTOR 
 
(U1, U2,…,Ud) = (F1(X1),F(X2),…,Fd(Xd)) 
 
HAS UNIFORM MARGINAL DISTRIBUTIONS. 
 
THE COPULA OF (X1,…Xd) IS DEFINED AS THE JOINT CDF OF (U1,…,Ud): 
 
C(u1, …, ud) = Pr[U1 <= u1,…,Ud <= ud]. 
 
THE COPULA CONTAINS ALL OF THE INFORMATION ABOUT THE DEPENDENCE 
STRUCTURE AMONG THE COMPONENTS OF (X1,…,Xd), AND THE MARGINAL CDFs Fi 
CONTAIN ALL OF THE INFORMATION ABOUT THE MARGINAL DISTRIBUTIONS. 
 
THE REVERSE OF THESE STEPS CAN BE USED TO GENERATE PSEUDO-RANDOM 
SAMPLES FROM GENERAL CLASSES OF MULTIVARIATE PROBABILITY 
DISTRIBUTIONS.  GIVEN A PROCEDURE TO GENERATE A SAMPLE (U1,…,Ud) FROM 
A COPULA DISTRIBUTION, THE DESIRED SAMPLE CAN BE CONSTRUCTED AS 
 
(X1,…,Xd) = (F1

-1(U1),…,Fd
-1(Ud)). 

 
THE CORRESPONDING COPULA FUNCTION IS 
 
C(u1,…,ud) = Pr[X1 <= F1

-1(u1),…,Xd <= Fd
-1(ud)]. 
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SKLAR’S THEOREM STATES THAT EVERY MULTIVARIATE CDF 
 
H(x1,…,xd) = Pr[X1 <= x1,…,Xd <= xd] 
 
OF A RANDOM VECTOR (X1,…,Xd) CAN BE EXPRESSED IN TERMS OF ITS 
MARGINALS Fi(x) = Pr[Xi <= xi] AND A COPULA C: 
 
H(x1,…,xd) = C(F1(x1),…,Fd(xd)). 
 
IF THE MULTIVARIATE DISTRIBUTION HAS A DENSITY h, THEN 
 
H(x1,…,xd) = c(F1(x1),…,Fd(xd)) f1(x1)…fd(xd), 
 
WHERE c IS THE DENSITY OF THE COPULA. 
 

DETAILED EXAMPLE OF A MULTIVARIATE TIME SERIES ANALYSIS 

APPLICATION 

 
THE CITED REFERENCES (ESPECIALLY BJRL, TSAY MTSA AND LÜTKEPOHL) PROVIDE 
DETAILED EXAMPLES OF ALL ASPECTS OF MULTIVARIATE TIME SERIES ANALYSIS.  
FOR A COMPACT SUMMARY OF KEY ASPECTS, THE ARTICLE VECTOR 
AUTOREGRESSIONS BY JAMES H. STOCK AND MARK W. WATSON (2001), POSTED 
AT INTERNET WEBSITE 
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.15.4.101 IS RECOMMENDED. 
 

5. TIME SERIES ANALYSIS SOFTWARE 

 
SOME STANDARD GENERAL-PURPOSE STATISTICAL SOFTWARE PACKAGES, SUCH 
AS SAS AND STATA, INCLUDE MODULES FOR ESTIMATING AND ANALYZING 
VECTOR AUTOREGRESSIVE (VAR) TIME SERIES MODELS (SPSS DOES NOT).  FOR 
VECTOR AUTREGRESSIVE MOVING AVERAGE MODELS, R SOFTWARE IS 
AVAILABLE.  SOFTWARE SOURCES AND PROCEDURES FOR USING THIS SOFTWARE 
ARE DESCRIBED IN THE CITED REFERENCE TEXTS.  FOR THE MAJOR REFERENCES, 
LINKS TO R SOFTWARE ARE AS FOLLOWS: 

https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.15.4.101
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THE MAIN WEBSITE FOR THE R PROJECT IS https://www.r-project.org/ .  SEE 
DISCUSSION ON pp. 17-18 FOR DETAILS.  SEE PACKAGES TSA, MTS, astata, stats. 
 
THE WEBSITE FOR THE BOOK TSAY, MULTIVARIATE TIME SERIES ANALYSIS WITH R 
AND FINANCIAL APPLICATIONS (WILEY, 2014) IS 
http://faculty.chicagobooth.edu/ruey.tsay/teaching/mtsbk/ . 
 
THE WEBSITE FOR THE BOOK TSAY, ANALYSIS OF FINANCIAL TIME SERIES  (WILEY, 
2010) IS http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/ . 
 
THE WEBSITE FOR THE BOOK LÜTKEPOHL, NEW INTRODUCTION TO MULTIPLE 
TIME SERIES ANALYSIS (SPRINGER, 2006) IS http://www.jmulti.de/ . 
 
THE WEBSITE FOR THE BOOK (ON UNIVARIATE TIME SERIES ANALYSIS) BY CRYER 
AND CHAN, TIME SERIES ANALYSIS WITH APPLICATIONS IN R (SPRINGER, 2008) IS 
http://homepage.divms.uiowa.edu/~kchan/TSA.htm . 
 
FOR BACKGOUND ON R AND S, SEE 
 
VENABLES, W. N., AND B. D. RIPLEY, MODERN APPLIED STATISTICS WITH S, 4TH ED. 
(SPRINGER, 2002) 
 
ADLER, JOSEPH, R IN A NUTSHELL 2ND ED. (O’REILLY, 2012) 
 
CRAWLEY, MICHAEL J., THE R BOOK, (WILEY, 2007) 
 
SAWITZKI, GÜNTER, COMPUTATIONAL STATISTICS, AN INTRODUCTION TO R (CRC 
PRESS, 2009) 
 
CORNILLON, PIERRE-ANDRÉ, R FOR STATISTICS (CRC PRESS, 2012) 
 
ZIVOT, ERIC AND JIAHUI WANG, MODERN FINANCIAL TIME SERIES WITH S-PLUS 
2ND ED., (SPRINGER, 2006).  POSTED AT INTERNET WEBSITE 
http://faculty.washington.edu/ezivot/econ589/manual.pdf . 
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